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Fig. 1. Method overview: (a) Cut graph on a surface, consisting of handle loops, connectors, and one additional path. (b) Conformal parametrization that

maps the cut graph’s branches to axis-aligned straight segments in the parametric domain and respects prescribed cone singularities (red and blue dots).

This map is only rotationally seamless, i.e., rotational components of transitions across cuts are k π/2-rotations, k ∈ Z, but scaling is arbitrary. (c) This map

modified by map padding; while locally highly distorted, it is actually seamless, there no longer is a scale jump. (d) Result after optimization for low isometric

distortion.

Seamless global parametrization of surfaces is a key operation in geom-

etry processing, e.g., for high-quality quad mesh generation. A common

approach is to prescribe the parametric domain structure, in particular, the

locations of parametrization singularities (cones), and solve a non-convex

optimization problem minimizing a distortion measure, with local injec-

tivity imposed through either constraints or barrier terms. In both cases,

an initial valid parametrization is essential to serve as a feasible starting

point for obtaining an optimized solution. While convexified versions of

the constraints eliminate this initialization requirement, they narrow the

range of solutions, causing some problem instances that actually do have

a solution to become infeasible.

We demonstrate that for arbitrary given sets of topologically admissible

parametric cones with prescribed curvature, a global seamless parametriza-

tion always exists (with the exception of one well-known case). Impor-

tantly, our proof is constructive and directly leads to a general algorithm

for computing such parametrizations. Most distinctively, this algorithm is

bootstrapped with a convex optimization problem (solving for a confor-

mal map), in tandem with a simple linear equation system (determining

a seamless modification of this map). This initial map can then serve as
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a valid starting point and be optimized for low distortion using existing

injectivity preserving methods.

CCS Concepts: • Computing methodologies → Mesh geometry mod-

els; Parametric curve and surface models;

Additional Key Words and Phrases: Conformal, cone metric, holonomy

ACM Reference format:

Marcel Campen, Hanxiao Shen, Jiaran Zhou, and Denis Zorin. 2019. Seam-

less Parametrization with Arbitrary Cones for Arbitrary Genus. ACM

Trans. Graph. 39, 1, Article 2 (December 2019), 19 pages.

https://doi.org/10.1145/3360511

1 INTRODUCTION

Computing global parametrizations of surfaces is a key operation

in geometry processing. While in general only disk-like surfaces

can be parametrized continuously in a (locally or globally) injec-

tive manner, surfaces of arbitrary topology can be dealt with by

cutting them to disks. Across the cuts, the parametrization will be

discontinuous, but this is inevitable, in general.

One can, however, require the parametric transitions across cuts

to be from certain classes, to support specific applications like

smooth surface approximation and quadrangulation. For instance,

restricting to similarity transformations (rotation, translation,

isotropic scaling) with a rotation by some multiple of π/2 yields

global parametrizations ideal for T-spline constructions [Campen

and Zorin 2017]. Restricting further to rigid transformations with

such discrete rotation angles yields parametrizations that (after

quantization [Bommes et al. 2013a; Campen et al. 2015; Lyon et al.

2019]) are well suited for tasks like conforming quadrangulation,

spline and subdivision fitting, seamless texturing, or constructing

grids for solving PDEs on surfaces. We call such parametrizations

seamless [Myles and Zorin 2012; Purnomo et al. 2004].
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Fig. 2. Zoom-ins of Figure 1. Left: cut-aligned conformal map. Middle:

padded map, with high distortion, but seamless and locally injective. Right:

map optimized for low isometric distortion.

Seamless parametrizations can have singularities, points around

which the total parametric angle is not 2π but some other inte-

ger multiple of π/2, i.e., the parametrization coordinate isolines do

not locally form a regular grid. Equivalently, the metric induced

by the parametrization has cones, points where the metric is not

flat, its curvature not zero but some other integer multiple of π/2.

Intuitively, in a quadrangulation induced by the parametrization,

these singularities or cones correspond to extraordinary vertices,

with valence different from 4.

As implied by the Gauss-Bonnet theorem, the total curvature

of these cones is a topological invariant—i.e., such cones, which

have a significant influence on the parametrization’s quality and

structure, cannot generally be avoided. Depending on the use

case, they can be considered an impairment or features of special

interest. In either case, having the ability to control (i.e., prescribe)

them—where they are, how many there are, what curvature

they have—is of obvious benefit. This motivates the problem we

consider in this article:

Compute a global seamless locally injective parametrization with

prescribed cone positions and curvatures (respecting Gauss-Bonnet).

Known general approaches to this problem (cf. Section 2), e.g.,

those used as the initial, and most difficult, step in quadrangulation

algorithms, rely on optimization formulations that are non-convex

and require feasible starting points to guarantee success; alterna-

tively, convexified formulations may not yield a solution even if

one exists. Thus, formally establishing existence of a solution and

constructing a feasible starting point is an essential step in the gen-

eral case. For the special case of genus 0, this task can be handled

using existing conformal metric computation techniques [Spring-

born et al. 2008; Luo 2004; Gu et al. 2018b; Campen and Zorin 2017],

cf. Section 4.3. Close to a general reliable solution to this problem

is an approach by Myles et al. [2014]: a valid global seamless in-

jective parametrization is guaranteed, cone preservation is aimed

for but not guaranteed—in a small fraction of cases unnecessary

additional cones arise.

That these are truly unnecessary in almost all cases follows from

the fact that the above task is actually feasible: The existence of

such parametrizations follows from a theorem on meshes with pre-

scribed extraordinary vertices [Jucovič and Trenkler 1973]. The

proof is relatively complex and purely combinatorial. As a conse-

quence, it does not easily translate into a practical parametrization

construction.

In this article, we provide a constructive proof for the existence

of seamless surface parametrizations that is conceptually simpler

and translates to a parametrization algorithm. Precisely, we show:

Theorem 1.1. Given a closed smooth surface M of genus д and

an admissible set C of cones ci , each given by a point pi ∈ M with a

prescribed curvature value Θ̂i = (4 − ki ) π
2 , ki ∈N>1, there exists a

global parametrization of M with cones C that has seamless transi-

tions.1

The terms used in the theorem are defined precisely in Section 3.

A set of cones C = {(pi ,ki )} is called admissible if it satisfies∑
i (1 − 1

4ki )=2 − 2д (Gauss-Bonnet) and ifk � (3, 5) (which is the

single one notorious infeasible case [Jucovič and Trenkler 1973]).

Basic Idea

Instead of directly aiming for a seamless cone metric on a sur-

face M :

(1) we cutM open using a cut graphG, obtaining the cut surface

M ′ consisting of one or more topological disks;

(2) compute a cone metric on M ′—without any seamlessness

requirements, but with prescribed boundary curvature;

specifically, we prescribe a rectilinear boundary, consisting

of geodesically straight segments meeting at right angles;

(3) modify this metric into a seamless one on M , yielding a

seamless parametrization with the prescribed cones; ex-

ploiting the rectilinear boundary property, this modification

is performed by padding the straight segments in the para-

metric domain with rectangles of suitably chosen size.

The metric in step (2) is known to exist; e.g., a conformal metric

with prescribed cones and boundary curvature (satisfying Gauss-

Bonnet) on a disk always exists—in the smooth setting (cf. Sec-

tion 3.2); the situation is more complicated in the discrete setting

(cf. Section 5.2): questions concerning the exact conditions for exis-

tence of discrete conformal metrics with prescribed boundary cur-

vature as well as concerning the convergence of the existing al-

gorithm that we leverage for this step, thus the injectivity of the

derived map, remain open. We note that conformality is not essen-

tial here: Any metric with prescribed boundary curvature could be

used in that step.

Figures 1 and 2 show the outcome of these main steps. We re-

fer to Appendix A for a comprehensive example illustrating these

steps in a concrete, simple case.

Key Contributions

Our key technical contributions pertain to step (3) in the out-

line above:

• We propose a technique (map padding) to modify a non-

seamless map into a seamless one.

• We prove that, for certain choices of cut graph combinatorics,

this technique always succeeds.

• We describe an implementation of this construction for the

discrete, piecewise linear case.

1We assume ki > 1, as cones with curvature 3 π
2 , corresponding to valence 1 ver-

tices in a quadrangulation, are of low relevance in common applications; with some
additional special case handling, our method could be extended to ki = 1.
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In other words, our approach is a problem reduction:

If one is able to compute a metric with prescribed cones and

prescribed boundary curvature for disk-topology surfaces, then this

solves (by means of our technique) the more general problem

of computing a global seamless parameterization with prescribed

cones for arbitrary-topology surfaces.

Our algorithm can be used to obtain non-degenerate, locally in-

jective, seamless parametrizations of arbitrary closed discrete sur-

faces (triangle meshes) with arbitrary cones, assuming the initial

metric with prescribed boundary curvature can be obtained.

2 RELATED WORK

Seamless surface parametrization and the related subject of quad-

rangulation and quad layout generation is a well-explored topic.

A relatively recent survey [Bommes et al. 2013b] has references to

many works in this area. We focus here on the most closely related

ones.

In a wide variety of applications, surface parametrizations are

required to be (locally) injective (i.e., without fold-overs) as well as

to exhibit low parametric distortion [Floater and Hormann 2005].

Due to the challenging nature of this requirement, a common strat-

egy is to proceed in a two-step fashion: First, construct an initial

injective parametrization (without specific attention to distortion),

then optimize it with respect to application specific distortion cri-

teria (while preserving injectivity). Our work follows this strategy.

Constructing injective maps. Whenever a robust overall algo-

rithm is desired, injective maps are almost always initialized using

the same classical result on convex harmonic maps [Floater 1997;

Tutte 1963] (essentially a discrete version of the Radó-Kneser-

Choquet theorem). In its original form, it handles surfaces with

disk topology and does not support cones. Some recent results

[Aigerman and Lipman 2015, 2016; Bright et al. 2017; Gortler et al.

2006] elegantly generalize the idea to other settings, but either not

to arbitrary sets of cones, not to arbitrary topology, not using the

piecewise linear Euclidean setting, or without similar guarantees

on map existence.

Injectivity-preserving optimization. A variety of techniques have

been presented for distortion optimization (e.g., Hormann and

Greiner [2000]; Kovalsky et al. [2016]; Rabinovich et al. [2017];

Schüller et al. [2013]; Shtengel et al. [2017]; Zhu et al. [2018]).

Through line search techniques, barrier functions, and similar

techniques they are able to guarantee preservation of injectivity—

if initialized with an injective starting point. State-of-the-art tech-

niques can handle large meshes efficiently and tolerate significant

imperfections in the initial solution.

Seamless parametrization. A number of methods have been de-

scribed for the construction of seamless parametrizations with pre-

scribed cones [Bommes et al. 2013a, 2009; Bright et al. 2017; Chien

et al. 2016; Ebke et al. 2016; Fu et al. 2015; Hefetz et al. 2019;

Kälberer et al. 2007; Myles and Zorin 2012, 2013]. Interestingly, but

not surprisingly, they do not follow the above two step principle—

as no general method for the first step (valid initialization) is

known for the arbitrary-topology arbitrary-cones setting. Instead,

they are typically based on optimization subject to non-convex

constraints and, despite long development and practical impor-

tance, no concise sufficient conditions for success are known. The

key issue is that there is no available way to construct an initial

solution, and one cannot guarantee that the solver will itself find

a way into the feasible region.

Only for certain special cases there are known solutions in this

regard, e.g., for specific genus or specific cones [Aigerman and

Lipman 2015; Gu and Yau 2003], using more general non-

piecewise-linear parametrization [Aigerman and Lipman 2016], or

requiring additional input [Tong et al. 2006]. Particular challenges

are caused by the fact that the given surface discretization may not

even admit a (elementwise linear) solution, i.e., systematic remesh-

ing capabilities are needed in any reliable approach.

Quadrangulation. The problem of surface quadrangulation with

conforming elements and prescribed extraordinary vertices is

closely related—state-of-the-art methods actually construct quad-

rangulations via seamless parametrization [Bommes et al. 2013b].

Jucovič and Trenkler [1973] investigate the question of existence

of such quadrangulations. The result is purely combinatorial and

does not yield a surface parametrization. On an abstract level, we

adapt some of the general ideas in this work as foundation of our

approach to modify non-seamless into seamless parametrizations

through map padding.

In the context of quadrangulation, our strategy of transitioning

from an initial non-seamless parametrization to a seamless one is,

in a sense, similar to modifying a non-conforming quadrangula-

tion into a conforming one. This has been tackled by simple subdi-

vision or more involved T-mesh simplification techniques [Myles

et al. 2014]—however, at the expense of not always preserving the

prescribed extraordinary vertices. Our modification technique, by

contrast, always preserves exactly the prescribed cones.

Cone selection. Regarding the (application specific) problem

of choosing cone locations and curvatures, common approaches

are based on considering surface curvature (e.g., via cross fields

[Vaxman et al. 2016]), surface deformation [Marcias et al. 2013;

Zhou et al. 2018], distortion reduction [Ben-Chen et al. 2008;

Kharevych et al. 2006; Soliman et al. 2018; Vintescu et al. 2017],

or on manual quadrangulation-driven design and editing [Campen

and Kobbelt 2014; Ebke et al. 2016].

General holonomy prescription. Campen and Zorin [2017] ad-

dress a related problem, showing that for any admissible holo-

nomy signature one can construct (also via conformal maps) a

seamless similarity map adequate for constructing T-splines. A

holonomy signature, in addition to prescribed cone angles, in-

cludes turning angles around homology loops. In contrast, we use

a stronger notion of seamlessness, not allowing scale jumps across

cuts, while not controlling global turning angles around homology

loops (cf. Section 7)—however, they are of the form kπ/2 (for some

k) by our construction.

3 SEAMLESS PARAMETRIZATION CONSTRUCTION

First, we define the notion of a seamless parametrization as well

as a weaker notion of a rotationally seamless parametrization we

need as an intermediate step.

Suppose a smooth surface M is cut to a set of topological disks

Mc
i by a cut graph G, i.e., a collection of smooth curves (branches)
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Fig. 3. Visualization of a parametrization on a surface near a cut

branch (red). Left: rotationally seamless. Right: seamless.

γj embeddeded in M meeting only at their endpoints (nodes). We

call the resulting cut surface Mc ; the boundary of Mc consists of

curves γ c
j (boundary curves). There is a canonical map π : Mc →

M , which is identity in the interior of Mc and maps exactly two

boundary curves γ c
j to each branch γj on M . Pairs of boundary

curves mapping to the same branchγj are called mates, and bound-

ary points where curvesγ c
j meet are called joints. The image of any

joint under π is a node. Pairs of non-joint points p,q ∈ ∂Mc with

π (p) = π (q) are called mated points. For a boundary point p, let

tp ∈ TpM
c denote a unit vector that is tangent to the boundary

∂Mc at p.

Definition 3.1 (Rotationally Seamless Parametrization). A con-

tinuous, locally injective map F : Mc → R2 is called rotationally

seamless parametrization of M , if for any pair p, q of mated points,

the images dFp (tp ) and dFq (tq ) of boundary tangents are related

by a similarity transformation Tpq , i.e., Tpq ◦dFp (tp ) = dFq (tq ),
with a rotation angle that is a multiple of π/2 and constant per

branch.

Such a rotationally seamless parametrization does, in general,

have a (pointwise) scale jump across the cut (cf. Figure 3 left)—

unless the similarity Tpq is actually just a rotation everywhere:

Definition 3.2 (Seamless Parametrization). A map F : Mc → R2

is called a seamless parametrization of M , if it is rotationally seam-

less and for each pair of mated points p, q the transition Tpq is

rigid, i.e., it is a rotation with a rotation angle that is a multiple of
π/2.

Notice that seamlessness implies that the images F (γ c
j ) and

F (γ c
k

) of mates γ c
j and γ c

k
are congruent.

A seamless parametrization induces a metric on the surface M,
which is flat except at the nodes, where it may be singular; it may

have a cone. We say that a seamless parametrization has a cone

with angle α at a node p, if the sum of parametric angles at all

joints q in Mc with π (q) = p is equal to α . This cone has curvature

Θ = 2π − α .

By contrast, the notion of a rotationally seamless parametriza-

tion is weaker: Due to the scale jump, it does not induce a metric

on M .

Overall Approach. We first construct a parametrization F that is

rotationally seamless, using a specific type of (conformal) maps:

maps with rectilinear boundary, i.e., with the image of the bound-

ary of the cut surface consisting of straight segments meeting

at right angles. Then this parametrization is modified near the

boundary to make the scale jump vanish to make it into a seam-

less parametrization F s . This is done using a process we call map

Fig. 4. Degree 4 cut graph on a surface of genus д = 3. This cut graph has

10 branches and 5 degree 4 nodes, thus 20 corners (marked black). The

cut graph consists of loops (red) and connectors (shades of blue) (cf. Sec-

tion 4.1).

padding. The key to our construction is cutting the surface into two

(in special cases three or four) topological disks, using cut graphs

with a particular structure. This is important for our method of

converting rotationally seamless parametrizations into seamless

parametrizations.

3.1 Cutting to Disk(s)

We construct the required cut graphG in two steps, first cutting the

surface M into a set of topological disks M ′i . Their disjoint union is

denoted M ′. Typically, we use two disks, with some exceptions for

special genus 2 cases.M ′ contains all cones in its interior. The final

cut surface Mc is obtained by adding branches passing through

all cones to this cut graph, such that no M ′i is split into multiple

components. This second step is explained in Section 3.3.

For the first step, we consider a particular type of cut graphs that

only have nodes of degree 4 and 3. Pairs of cyclically sequential

branches around nodes form sectors: four at degree 4 nodes, three

at degree 3 nodes. At degree 4 nodes, all

four sectors are marked as corners (cf. Fig-

ure 4). At degree 3 nodes, two sectors are

marked as corners, the third one is referred

to as flat. We refer to degree 3 nodes as T-nodes.

We denote the boundary curves ofM ′ byγ ′j . Any pair of sequen-

tial boundary curves of M ′ corresponds to a corner or a flat joint.

As we will require boundary curves to be straight and corners to

have angles π/2 under a certain metric in the following, the number

mi of corners on the boundary of each connected component M ′i
needs to match the total prescribed cone curvature in the interior

of M ′i as per Gauss-Bonnet, i.e.,

mi
π

2
+
∑

(pj ,Θ̂j )∈C ′i

Θ̂j = 2π , (1)

where C ′i ⊆ C is the subset of cones prescribed within M ′i . Note

that this is equivalent tomi = 4 +
∑

(pj ,Θ̂j )∈C ′i
(kj − 4).

Definition 3.3 (Admissible Cut Graph). A cut graph with marked

corners is admissible, if

• all branches are embedded smooth curves meeting transver-

sally at nodes of degree 3 or 4, and not passing through cones;

• the cut graph partitions the surface into disk-topology

components;
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• the number of corners of each component satisfies Equa-

tion (1);

• if a boundary curve is involved in a flat sector, its mate is not.

3.2 Cone Metric with Rectilinear Boundary

Corners partition the boundary ∂M ′ into segments. Note that a seg-

ment may contain flat joints, and, as a consequence, consist of sev-

eral boundary curves γ ′j (complex segment). (All cut graphs we will

be working with contain at most two T-nodes, thus two flat joints,

i.e., almost all segments are simple segments.)

We now require a cone metric on M ′, which has a rectilinear

boundary: under such a metric, segments are geodesically straight

(i.e., zero geodesic boundary curvature along ∂M ′ in the interior of

segments), and sequential segments form right inner angles of π/2.

Proposition 3.1. On a cut surface M ′, obtained from a smooth

surface M by cutting it along an admissible cut graph G, there is

a cone metric with rectilinear boundary and prescribed admissible

cones C = {(pi , Θ̂i )}.

A proof is given in Appendix C. In particular, a conformal cone

metric with these properties exists; conformality, however, is not

essential in the following. This cone metric on M ′ does not, in

general, define a metric on M , as the lengths defined by the met-

ric along the two sides of the cut graph’s branches may disagree,

cf. Figure 2, left.

Note that the metric angle on M around points on G is 2π ev-

erywhere: points in the interior of branches are surrounded by two

sectors with angles π + π , node points by three sectors with angles

π + 2 π
2 or four sectors with angles 4 π

2 . As we preserve these an-

gles in the following, this implies that no spurious cones emerge.

3.3 Metric to Rotationally Seamless Parametrization

The cone metric with rectilinear boundary is flat away from the

cones on M ′. We now extend the cut graph G by a set of trees Ti ,

yielding the extended cut graphGT = G ∪T , whereT is the union

of treesTi . The treeTi is rooted on ∂M ′i at a single non-joint point,

and its branches connect all cones prescribed within M ′i . Let Mc
i

be the surface obtained by cutting M ′i along Ti . The segment of

∂M ′i split by the root point ofTi is still considered one logical seg-

ment. Note that this cutting ofM ′ toMc byT introduces additional

boundary curves; we do not refer to these as segments, and they

are, in general, not straight under the cone metric. The boundary

curves of Mc are denoted γ ′j if they map to branches of G, or γT
j

if they map to branches of T . The above constructed cone metric

is flat in the interior of Mc
i (as the cones lie on ∂Mc ), and defines

(via integration) a map Fi : Mc
i → R2. It is unique up to a rigid

transformation. We choose this transformation so that all segment

images are axis-aligned in R2. This is possible because they (due

to rectilinearity) are all straight and meet at right angles. Note that

images of boundary curves γT
j are, in contrast to segments (con-

sisting of boundary curves γ ′j ), neither axis-aligned nor straight

in general, cf. Figure 18 in Appendix A. Together, these maps Fi

define a global parametrization F of M .

Proposition 3.2. The map F is a rotationally seamless

parametrization of M (but not, in general, seamless—except on T ).

Fig. 5. (a) Generic local view of the boundary of map F (Mc ), with straight

segments and right-angle corners. (b) A rectangular strip along a segment

is marked. (c) The strip is stretched outwards, effectively increasing the

length of the two adjacent segments left and right of the central segment.

(d) This padding operation can be applied in sequence to further segments.

Fig. 6. (a) Global visualization (without cuts to cones) of the rectilinear

map, where straight segments appear as curved arcs (as explained in Sec-

tion 3.3). (b) Padding (analogous to Figure 5) of segment 1, increasing the

lengths of segments 0 and 2. (c) Padding of segment 2, increasing the

lengths of segments 1 and 3. This can be continued to adjust all segments’

lengths.

Proof. Due to all segment images being axis-aligned, the angle

between the images of any two mated boundary curves γ ′j , γ ′
k

is

some multiple of π/2, constant per branch. The images of any two

mated boundary curves γT
j , γT

k
are congruent (in particular, simi-

lar) as the metric is flat onT by construction. The rotation between

them is a multiple of π/2, because the prescribed angles at cones

are multiples of π/2 (cf., e.g., Springborn et al. [2008]). Hence, F is

seamless onT but, in general, only rotationally seamless onG. �

Visualization. For purposes of illustration, we would like to visu-

alize the image F (Mc ). Due to global overlaps implied by negative

curvature cones, this is not an easy task. However, locally, near

the cut graph G, F (Mc ) always looks like in Figure 5(a)—because

the boundary consists exclusively of straight segments meeting at

right-angle corners. (The only exception being the one boundary

curve per Mi where the treeTi is rooted.) We use this type of illus-

tration when a local view is sufficient. An alternative is to flatten

the surface globally, without cutting to the cones, instead (for vi-

sualization purposes) pushing the curvature of the cones evenly

onto the boundary ∂M ′. This leads to a flattening of M ′i as shown

in Figure 6(a), where straight boundary segments appear as curved

arcs (and cones are not visible). This makes it possible to visualize

the complete rectilinear boundary without cuts or overlaps.

3.4 Seamless Parametrization by Padding

The rotationally seamless map F differs from a seamless map in

two respects: the images of mated segments may have different

lengths, which implies a scale jump; but even if they are of equal

length, this only implies that the scale is equal on average, rather

than pointwise along the corresponding branch.
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Fig. 7. Illustration of strip definition and stretch map applied to perform

padding of a segment sj by padding width w j , cf. Section 3.4.

We thus modify F by composing it with two types of local

segment-wise maps:

• a stretch map дj ,which effects a change of the lengths of seg-

ment images,

• a shift map r j ,which subsequently equidistributes scale along

a segment.

We iteratively apply these operations segment by segment. Note

that these are applied only to segments; across the additional cuts

T the map F is already seamless, cf. Proposition 3.2.

Stretch. For a boundary segment sj , we consider a thin strip Sj

on Mc , which runs along the entire segment and maps to a rect-

angular region Rj via F . This is illustrated in Figures 5(b) and 7.

More formally, the strips are defined as follows. The restriction

of F to the segment sj (which maps sj to a straight segment in the

plane) is bijective, and so is the restriction Fj to a sufficiently small

neighborhood Ωj ⊂ Mc of sj . We choose the rectangle Rj within

F (Ωj ) such that it includes F (sj ) but no cone points and no joints

except the ones on sj . The thin strip Sj on Mc is then defined as

Sj = F−1
j (Rj ), as shown in Figure 7.

Outside of Sj , we preserve the map, but within Sj , we modify

it by a one-dimensional scale map дj such that Sj is mapped onto

a larger rectangle R′j ⊇ Rj whose width (orthogonal to the seg-

ment sj ) is increased by a padding width w j . This is illustrated in

Figures 5(c) and 7. Effectively, the domain is locally padded by an

additional rectangular region R′j\Rj of width w j along the image

of sj , cf. Figure 6.

The situation is slightly different at the one segment sj per com-

ponent where T is rooted (cf. Section 3.3): it is separated into two

parts byT (cf. Figure 20, left). Both parts can, however, be handled

separately using the same technique, as detailed in Appendix D.

We define the padded map Fp iteratively, iterating over the (ar-

bitrarily ordered) strips Sj , j = 1, . . . ,n, of each connected compo-

nent of Mc . Fp,0 coincides with F , and Fp,m+1 differs from Fp,m

only on Rm+1, where it is defined as дm+1 ◦ Fp,m |Rm+1
, where

дm+1 is the above scaling transformation (detailed in Appendix D).

Fp = Fp,n .

Shift. In the padded map Fp , we consider for each segment a

strip S
p
j (now defined based on Fp ) and modify the map within

this strip by a map r j with the following properties:

• its restriction to a simple segment sj reparametrizes sj to con-

stant speed; for complex segments: constant speed per con-

tained boundary curve, cf. Appendix D,

• the map is equal to identity on the rest of the strip’s

boundary,

• it is continuous and bijective.

Fig. 8. The length of segment i is affected by the padding of the two ad-

jacent segments: the original length �i changes to �i +wprev(i ) +wnext(i ) .

We define the shifted map F s iteratively, again iterating over the

strips S
p
j of each connected component of Mc . F s,0 coincides with

Fp , and F s,m+1 differs from F s,m only on R
p
m+1 = F s,m (S

p
m+1),

where it is defined as rm+1 ◦ F s,m |
R

p
m+1

, where rm+1 is the above

shift map (detailed in Appendix D). Finally, F s = F s,n .

Proposition 3.3. F s is a rotationally seamless parametrization

of M with the same cones as F , and not only the angle but also the

scale jump is constant per branch of the cut.

A proof is given in Appendix D. The choice of padding widths

determines the lengths of segments under Fp and, as they are pre-

served by the shift maps, under F s . In the following Section 3.5,

we detail how equalizing padding widths can be found:

Definition 3.4 (Equalizing Padding Widths). A set of padding

widths leading to all pairs of mates being of equal length under

F s is called equalizing padding widths.

Proposition 3.4. If F s is constructed using equalizing padding

widths, then it is a seamless parametrization of M .

Proof. The constant scale jump per branch (Proposition 3.3),

together with the equal lengths of mated boundary curve images

implies a scale jump of zero per branch, i.e., rigid transitions. �

3.5 Length Equalization

When a boundary segment is padded, the lengths of the two adja-

cent segments’ images change. To make this precise, let �i be the

length of segment si before any padding is performed, and wi be

the amount of padding applied to si . The length �′i of si after each

segment was padded according to values w = (w0,w1,w2, . . .) is

�′i = wprev(i ) + �i +wnext(i ) , (2)

where prev(i ) and next(i ) are the two segments adjacent to si , pre-

ceding and following it in cyclic order along ∂M ′, cf. Figure 8.

Our goal is to find an equalizing assignment of padding width

variablesw such that the lengths �′ = {�′0, �
′
1, �
′
2, . . .} after padding

are equal for each pair (si , sj ) of mated segments, i.e., �′i = �
′
j . This

leads to length equalization equations

wprev(i ) +wnext(i ) −wprev(j ) −wnext(j ) = �j − �i . (3)

However, only if all cut graph nodes are of degree 4, all segments

are simple, and mated in pairs as a consequence. In the presence

of T-nodes (which imply complex segments) the situation is a lit-

tle different: a complex segment si consists of multiple boundary
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curves; their mate curves, however, form simple segments due to

the last property of Definition 3.3. Hence, generally, a (simple or

complex) segment si is mated with a sequence Ji = (sj , sk , . . .) of

one or more simple segments. Length equalization equations then

take this more general form:

�′i =
∑

j ∈Ji

�′j , (4)

which expands to

wprev(i )+wnext(i ) −
∑

j ∈Ji

(
wprev(j )+wnext(j )

)
=
∑

j ∈Ji

�j −�i . (5)

These equations form a globally interdependent equation system:

Aw = b, wi ≥ 0∀i . (6)

Note the non-negativity condition; it ensures that the padding

operation actually stretches (w > 0) rather than squeezes (w < 0)

the strips along segments. Allowing squeezing would require an

upper-bound constraint.

This system needs to be solved to achieve length equalization

of mated segments, enabling seamlessness. Unfortunately, it is not

generally feasible—it may have no non-negative solution or even

no solution at all. Notice that the system matrix structure is en-

tirely determined by the cut graph’s combinatorics, leading to the

following definition.

Definition 3.5 (Equalizable Cut Graph). An admissible cut graph

for which equalization system Equation (6) is feasible for arbitrary

b, is called equalizable.

Our key result, accompanying the proposed map padding tech-

nique, is a proof showing that there is an equalizable cut graph for

any genus and any admissible set of cones, as well as an efficient

algorithm to construct such cut graphs (cf. Section 4 and Appen-

dix B).

4 EQUALIZABLE CUT GRAPHS

We prove the following proposition:

Proposition 4.1. For any genus д and any admissible prescrip-

tion of cones C , there is an equalizable cut graph; i.e., we can

always obtain equalizing padding widths that enable a seamless

parametrization.

The foundation of our construction of equalizible cut graphs is

a graph we call a hole chain. Variations thereof, depending on the

surface’s genus and the cone configuration, then yield equalizable

cutgraphs. Cut graphs covering all cases (arbitrary genus, arbitrary

admissible cones) are defined in this section. Their equalizability

is shown in Appendix B.

Together with Proposition 3.1 (rectilinear cone metric), Propo-

sition 3.2 (rotationally seamless map), and Proposition 3.4 (seam-

less modification given equalizing padding widths), this Proposi-

tion (equalizable cutgraphs) concludes the constructive proof

of the main theorem 1.1.

4.1 Hole Chain

Given a closed surface M of genus д > 0, we cut it along д non-

intersecting non-homotopic non-separating smooth loops αi . This

yields a topological sphere M◦ with 2д holes. Note that each loop

Fig. 9. Schematic depiction of a chain of holes for a genus д = 4 surface:

circles are holes (obtained by cutting the surface along д loops), straight

line segments are the sides of cut paths (connectors) between these holes.

Together, the hole chain cuts the surface to a topological disk (blue), i.e.,

a sphere with one hole (white, bounded by the black curve). An example

of a hole partner correspondence is indicated by dashed arcs; depending

on the chosen ordering of holes in the chain, these partner arcs will look

different.

corresponds to two holes, which are called partners. Let the holes

be numbered from 0 to 2д − 1, and denoted hi , in such a way that

h0 and h2д−1 (called terminals) are partners.

Let π : M◦ → M be the canonical map from M◦ to M , tak-

ing hi and its partner hj to their corresponding loop α : π (hi ) =
π (hj ) = α .

On each holehi , pick two distinct pointsqi andq′i , such that they

are identified across partners onM ; i.e., for partnershi ,hj , we have

π (qi ) = π (qj ) and π (q′i ) = π (q′j ). For each 0 ≤ i < 2д − 1, we fur-

ther cut M◦ along a smooth non-intersecting path between holes

hi to hi+1, starting transversally at point q′i and ending transver-

sally at pointqi+1. These paths are called connectors. Note that after

each such cut the surface remains a topological sphere with holes

(decreasing in number), thus, it remains path-connected; therefore,

these connectors always exist. Loops and connectors together form

a cut graph we call hole chain, as depicted abstractly in Figure 9

and concretely in Figure 4, which yields the surface M ′, a sphere

with one hole, i.e., a disk. Loops and connectors are assumed not

to intersect any prescribed cone.

Proposition 4.2. The hole-chain cut graph for any genus д > 0

is admissible.

Proof. As the connectors’ endpoints qi , qj are identified in

pairs on M across partners hi , hj , each resulting cut graph node (at

point π (qi ) = π (qj ) on M) is of degree 4 (cf. Figure 4). All branches

are smooth curves meeting transversally at their endpoints and

not crossing cones by construction. The surface is cut to a single

component with disk topology. As the set of conesC is admissible,

we have
∑

j Θj = 2π (2 − 2д); the hole chain cut graph has 2д − 1

nodes with 4 corners each, i.e., 8д − 4 corners. Thus, Equation (1)

is satisfied. �

Odd-Couple Condition. We impose one condition (besides termi-

nals being partners) on the way the numbering of holes is chosen:

there needs to be at least one odd couple, i.e., two partner holes

that have an odd number of holes between them in the chain, i.e.,

there is an i and an integer k such that hi and hi+2k are partners.

This will be expected in the proof of equalizability. Note that this

is impossible if there are just four or less holes, thus instead special

case variations of the hole chain are used for genus 1 (two holes)

and genus 2 (four holes) cases, as detailed in Section 4.3.
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Fig. 10. Examples of extra paths (bottom) that could be added to the hole

chain cut graph. The red path is not an admissible extra path, because it

splits the surface into two components with m0 = 4 and m1 = 8д −m0 =

28 corners (cf. Section 4.2).

Definition 4.1 (Fourfold Cones). A set of conesC = {(ci ,ki )}with

ki divisible by 4 for each i is called fourfold.

While the above hole chain cut graph is not equalizable in gen-

eral, it permits equalization for specific righthand sides b:

Proposition 4.3. For any genus, a fourfold cone prescription im-

plies a righthand side b for which Equation (6) is feasible.

A proof is given in Appendix B. For the general, non-fourfold

case, variations of the hole chain are used. We will describe the

necessary changes next.

4.2 General Case (Genus 3+)

In case the cone prescription is not fourfold, i.e., there is at least

one ki mod 4 � 0, we extend the hole chain cut graph by one extra

path (cf. Figure 10)—which makes it equalizable.

Definition 4.2 (Valid Extra Path). A simple path is called a valid

extra path for a hole chain cut graph if

• it does not pass through a cone,

• only its endpoints are contained in the hole chain cut graph,

• at least one endpoint is on a hole of the hole chain,

• no endpoint is coincident with a node of the hole chain.

Notice that this extra path forms two additional nodes, both of

degree 3, i.e., T-nodes (or, if coincident, one of degree 4) at its end-

points. At each, we mark as corners the two sectors directly adja-

cent to the extra path. Hence, the total number of corners increases

from 8д − 4 to 8д. At the same time, the extended hole chain cut

graph cuts the surface into two components,M ′0 andM ′1, each with

disk-topology, with numbers of corners m0,m1. In particular, we

havem0 +m1 = 8д.

For the extended hole chain to remain admissible, we need to

ensure that Equation (1) is satisfied, i.e., the numbermi of corners

per component M ′i needs to match the total curvature of cones C ′i
prescribed within the component. Note that this is satisfied for M ′0
if and only if it is satisfied for M ′1. Also, if the endpoints lie on

two mated segments, we choose them as mated points, to create a

degree 4 node rather than two opposite T-nodes. We furthermore

require that the numbers m0, m1 of corners are not divisible by 4.

This will be expected in the proof of equalizability.

Definition 4.3 (Admissible Extra Path). A valid extra path that

yields corner numbers m0, m1 not divisible by 4 and satisfying

Equation (1) is called admissible.

Proposition 4.4. An admissible extra path exists for any non-

fourfold cone prescription and any genus д ≥ 3.

Fig. 11. Cut Graph pattern for genus 1 surfaces, shown abstractly (left)

and on an example surface (right). The surface is partitioned into a 2-corner

region (enclosed by blue and red paths) and a 6-corner region.

Proof. Pick one prescribed cone ci with ki mod 4 � 0. Let β be

a simple path from a non-corner point q on the hole h0 to ci , not

containing any other cone. Let γ be a path that starts at q, runs

(arbitrarily close) along one side of β , then around ci , then back

along the other side of β , and ultimately (arbitrarily close) along

the cut G until it has passed ki − 2 corners. It then connects to a

point q′ on the segment it reached. If γ is chosen sufficiently close

to β and G, then it is an example of a valid extra path: the region

that contains ci contains no other cone and it has ki corners (the

ki − 2 corners passed along G plus the two corners formed by the

extra path itself withG at q and q′). Also, γ is connected to a hole,

namely h0. �

The equalizability of the hole chain cut graph with an odd-

couple extended by an admissible extra path is proven in Appen-

dix B.

4.3 Special Cases (Genus 0, 1, 2)

Genus 0 Case. In the case of a topological sphere, our method

formally is applicable, but does not actually contribute anything:

the cut graph is empty; there are no cuts across which the cone

metric could be non-seamless, thus no padding is required. The

existence of conformal metrics with prescribed cones on the topo-

logical sphere M is well-known [Troyanov 1991].

Genus 1 Case. For genus 1 surfaces, we (similar to the general

case) add one extra path, but deviate slightly from the general hole

chain pattern in terms of identification of connector endpoints.

The cut graph pattern is depicted in Figure 11. Notice that the sur-

face is split into two components, with 2 and 6 corners. It is easy to

see that for any admissible prescription of cones on a genus 1 sur-

face, one either has no cones at all (in this case the basic hole chain

cut graph is sufficient, cf. Proposition 4.3) or one has, among the

prescribed cones, one or more cones whose curvature sums up to π
(due to the Gauss-Bonnet theorem, there are cones of positive and

negative curvature, and the case of a single positive cone of curva-

ture π/2 is the one non-admissible case, cf. Section 1). The surface

bi-partition by this cut graph pattern is thus compatible with any

non-empty cone prescription, i.e., the paths can be chosen in an

admissible way on M .

The equalization equation system of this pattern is easily

checked explicitly for non-negative feasibility (cf. Appendix B.2).

Genus 2 Case. For genus 2 surfaces, we also need to deviate from

the general case. In contrast to the genus 1 case, where we could

assume that a subset of prescribed cones always have curvatures
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Fig. 12. One of the cut graph patterns for genus 2 surfaces. Segments i

and i′ are mates, i.e., correspond to a common cut graph branch. The sur-

face is partitioned into a 5-corner region (center) and a 11-corner region

(surround).

summing up to one specific value, five cases need to be distin-

guished: there is a subset of prescribed cones with curvatures sum-

ming to π , π/2, −π/2, −π , or −3π/2 (compatible with regions with 2,

3, 5, 6, and 7 corners, respectively). This list is exhaustive, because

the total sum of cone curvatures is −4π on a genus 2 surface, and

not all cones have curvatures that are multiples of 2π (as this case

was handled already in Proposition 4.3); as a consequence, at least

one of these five values has to appear as a subsum.

Depending on which curvature sum subset is available in a given

set of prescribed cones, the cut graph pattern needs to be chosen

compatibly. For the case that a cone subset with curvature sum

−π/2 is available (as in most practical scenarios), the pattern de-

picted in Figure 12 can be used; for the remaining patterns refer

to Appendix B.3. Notice that this pattern is a variation of the basic

hole chain: two connectors are required to cross. This partitions

the surface into a 5-corner region (compatible with a curvature

−π/2 subset) and a 11-corner region (compatible with the remain-

ing cones).

The equation systems corresponding to these patterns are easily

checked explicitly for non-negative feasibility.

5 IMPLEMENTATION

We now describe how our algorithm can be implemented for dis-

crete surfaces. In this section, M denotes a closed triangle mesh of

arbitrary genus д. Cones are prescribed at vertices of M ; such ver-

tices are called cone vertices. We first focus on the case д ≥ 3, then

on the minor deviations required for cases д = 1 and д = 2.

General Overview. The main steps of the algorithm are:

(1) Construct д non-contractible loops and cut M along these

loops (Section 5.1).

(2) Connect all holes using shortest paths, selecting the con-

nection pattern based on the given genus and cones. Where

necessary, add one extra path; then cut the mesh (Sec-

tion 5.1).

(3) Set target angles at cone and corner vertices. Compute the

corresponding discrete conformal metric with prescribed

curvature (Section 5.2).

(4) Number all cut segments and set up the system matrixA and

righthand side b accordingly (Section 5.3).

(5) Compute a solution to the linear system Aw = b; add a con-

stant shift to yield a solution w ≥ 0 (Section 5.3).

(6) Extend the cut graph to include all cones; lay out the mesh

in the plane according to the metric (Section 5.4).

(7) Perform padding according to padding widths w (Sec-

tion 5.5).

The output of the algorithm is a seamless parametrization with

the prescribed cones. While the parametric distortion initially

is high near the cuts, this parametrization provides the feasible

starting point required by techniques for injectivity-preserving

parametrization distortion optimization (cf. Section 5.6) as well

as quadrangulation methods based on quantization of seamless

parametrizations.

5.1 Cut Graph

On M , one option to obtain д non-intersecting non-contractible

loops is via handle/tunnel loop algorithms [Dey et al. 2013], mod-

ified to avoid cone vertices. A simpler robust approach is to it-

eratively cut the mesh д times, each time along an arbitrary

non-contractible loop not containing a cone or a boundary vertex,

obtained using the tree-cotree algorithm [Erickson and Whittle-

sey 2005]. To ultimately yield a cut graph that is not unnecessarily

convoluted, it is advisable to pick a short loop each time.

We construct the connectors between the 2д holes as shortest

paths, not containing cone, boundary, or other paths’ vertices, us-

ing Dijkstra’s algorithm. A natural ordering of the holes can be

determined using a Hamiltonian path algorithm; this order needs

to be adjusted slightly before connector construction, to ensure the

paired-terminals and odd-couple conditions are satisfied (cf. Sec-

tion 4.1).

Mesh Refinement. We work with discrete paths/loops, following

the edges of M . For the algorithm to be robust regardless of the

mesh structure, after each construction of a path, we split each

mesh edge that is not on a path if its two vertices both are either

on the boundary, on a path, or on a cone. This ensures that the

mesh, cut by the paths, remains path-connected with respect to the

discrete edge paths, avoiding boundary, path, and cone vertices.

Extra Cut. The extra cut path (needed for the general genusд ≥ 3

case) is constructed as a shortest path as well. However, we need

to employ a cone-aware variant of Dijkstra’s algorithm to ensure

cone/corner compatibility, cf. Equation (1).

To this end, to each directed dual edge e of the mesh M ′, we

assign a value ρe (with ρe = −ρē for oppositely directed dual edges

e , ē) such that the sum of these values clockwise around a single

cone vertex ci is Θ̂i , and around non-cone vertices zero. Such an

assignment can, for instance, be obtained using a spanning tree of

the cones (Figure 13), rooted at the boundary ∂M ′: initialize ρ at

all leaves of the tree and propagate the values towards the root,

summing values where branches meet.

Now for an arbitrary simple closed clockwise dual edge path γ ,

we have the following important property:
∑

e ∈γ ρe =
∑

pi ∈Γ Θ̂i ,

where Γ is the set of all vertices enclosed by γ [Crane et al. 2010].

We call this sum
∑

e ∈γ ρe , with a slight abuse of terminology also

for non-closed paths, (partial) holonomy. For a closed path, the sum∑
e ∈γ ρe along a closed path tells us what total cone curvature is

contained in the region enclosed by the path.

We then employ Dijkstra’s algorithm, starting from a hole seg-

ment on ∂M ′, and keep track of the partial holonomy values along

the way. Whenever the front propagation in Dijkstra’s algorithm

reaches ∂M ′ again, we tentatively close the loop by walking back

to the starting point clockwise along ∂M ′, counting passed corners

ACM Transactions on Graphics, Vol. 39, No. 1, Article 2. Publication date: December 2019.



2:10 • M. Campen et al.

Fig. 13. Example of the holonomy-aware extra path computation. Left:

a tree of cones with computed ρ-values is shown as black dashed lines.

Path γ from boundary to boundary, crossing two tree branches, has a ho-

lonomy value
∑

γ ρ = π/2. This path is closed along the boundary by β

(with
∑

β ρ = 0), forming m = 3 corners. As
∑

γ +β ρ = π/2 and m = 3 con-

forms with Gauss-Bonnet (1), the path γ is admissible. Right: to illustrate

that the tree of cones can be chosen arbitrarily, here the same situation

is depicted with a different tree. We have
∑

γ ρ = 0 and
∑

β ρ = π/2, thus

again
∑

γ +β ρ = π/2.

on the way, and checking whether the total holonomy matches the

number of corners, cf. Section 3.1, Equation (1). If it matches, then

the path is accepted and added as extra cut. An example is shown

in Figure 13.

A modification is needed to the standard algorithm, though:

Dijk-stra’s algorithm keeps track of, for each vertex, the short-

est path back to the starting point—regardless of partial holonomy∑
ρ. So while there are shortest paths of different partial holonomy

back to the starting point, Dijkstra’s algorithm discards all but the

shortest one. We, instead, keep track of the shortest path per vertex

per holonomy value. Otherwise paths that could end up having a

suitable holonomy in the end, may be discarded early. We there-

fore perform Dijkstra’s algorithm not on M ′, but on a branched

covering of M ′ [Kälberer et al. 2007], with sheets glued according

to ρ. In practice, this means that each triangle stores separate dis-

tance information per partial holonomy value, indexed by
∑
ρ of

incoming fronts.

We also need to ensure that γ is simple on M ′. While the

holonomy-aware version of Dijkstra’s algorithm yields a simple

path on the covering, its projection to M ′ may be self-intersecting.

Before advancing the front to the next vertex, we always check

whether this vertex is already contained in the predecessor path

to prevent such self-intersections. While with this latter modifi-

cation it is no longer guaranteed that a path is always found, one

can always fall back to an explicit path construction following the

existence proof in Section 4.2; we have never encountered a case

where this was necessary.

Special Cases. The connectors of the special cut graph patterns

employed for genus 1 and genus 2 surfaces are realized using short-

est paths as well. These are constructed incrementally between

endpoints chosen on the holes, and cross points chosen on other

connectors where necessary. For those paths that split the surface

into disjoint components, again the above cone-aware shortest

path algorithm is employed to ensure cone/corner compatibility.

5.2 Conformal Map

After cutting M using the cut graph G to obtain M ′, for each

component of M ′ (typically one or two, except for some genus

2 cone configurations), we need to obtain a cone metric with

rectilinear boundary. This is the one part of the implementation,

where achieving robustness in the discrete case is a challenge,

even though in the smooth case (cf. Section 3.2) things are rather

straightforward.

In contrast to the continuous case, questions of existence of

(some notion of) discrete conformal metrics with prescribed cones

and boundary curvature are not fully settled. For cases without

boundary, recent results have brought theoretical insights [Gu

et al. 2018a, 2018b; Luo 2004; Springborn 2017] and provide an al-

gorithmic foundation but the boundary case requires further work

on the theory side.

We use a modification of the conformal mapping algorithm for

meshes without boundary described in Campen and Zorin [2017];

it combines the elegant variational formulation of Springborn et al.

[2008] with on-the-fly mesh modifications (edge flips, following

[Luo 2004]). For the genus 0 case, this algorithm can be used di-

rectly (cf. Section 4.3) to produce a seamless parametrization. With

a minor extension, we additionally prescribe geodesic boundary

curvature, using the holonomy angle constraints offered by this

method, applied for each boundary vertex’s triangle fan. The an-

gle values are set to π/2 at corners and π at all other boundary

vertices. While this algorithm is observed to behave well in prac-

tice, as mentioned earlier, further work is necessary to determine

whether formal guarantees (regarding general existence and con-

vergence) can be established.

In this context let us remark that our overall seamless

parametrization construction does not in any way rely on the cone

metric actually being conformal—this was merely a convenient

natural choice that allows to easily ensure existence of a locally

injective map with a given boundary curvature in the proof. If dif-

ferent approaches to conformal mapping, to other discrete notions

of conformal mapping, or entirely different non-conformal meth-

ods for parametrization with piecewise straight boundaries are de-

signed, then these can be used alternatively.

A recently proposed conformal mapping method [Sawhney and

Crane 2017] supporting cone and boundary curvature prescription

is particularly efficient—but, for instance, does not include remesh-

ing capabilities inevitably required for full robustness. One could

construct a hybrid solution with the more efficient algorithm tried

first, and the robust but slower one serving as fallback.

Note that if this is important in a use case, then the edge flips

that are performed by the conformal metric computation algo-

rithm can ultimately be realized by means of edge splits, as de-

scribed in Fisher et al. [2007]. In this way the output mesh is a

locally refined version of the input mesh (rather than a mesh with

arbitrarily different combinatorial structure) and its embedding is

preserved.

5.3 Equalization

We (arbitrarily) number the segments of ∂M ′ and set up the system

matrix A Equation (6) accordingly, with one Equation (3) for each

pair of mates (or Equation (5) where T-nodes are involved, cf. Sec-

tion 4.2). The right-hand side b is determined by measuring the

lengths of the segments under the metric computed in Section 5.2.

Then, we solve the linear system Aw = b. As it is underdeter-

mined, we compute the least-norm solution w∗ via ATAw = ATb.
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Fig. 14. (a) Mesh near a segment (top) to be padded. (b) The strip to be

stretched (green) is formed by inserting a straight line into the triangula-

tion (by splitting edges at the intersections), so close to the segment that

no vertex is contained. (c) The strip is stretched outwards by displacing the

vertices that lie on the segment by the desired padding width. (d) The ver-

tices on the segment are translated laterally according to ϕ for pointwise

seamlessness.

If the cut graph contains an extra path (cf. Section 4.2), then we

additionally fix the two padding width variables associated with

the two extra path segments to zero (by eliminating them from A);

Proposition B.1 asserts that the system remains feasible.

The resulting solution w∗ does not generally satisfy the impor-

tant non-negativity constraint of Equation (6). However, we can

now add a sufficiently large constant (as described in the proof of

Proposition B.1) to all padding widths w∗i (except those associated

with an extra path, already fixed to zero). This ensures that the

equalizing padding widths are non-negative.

5.4 Flattening

To obtain the map F from the conformal cone metric, we first need

to extend the cut graph G to GT (cf. Section 3.3). In each compo-

nent of M ′, we pick a non-corner point p on a segment, and com-

pute the shortest paths from p to all cones in the component. The

union of these paths forms the treeT , extendingG toGT . Note that

the piecewise-linear form of padding we use in the discrete setting

(cf. Section 5.5) does not require the tree to meet the segment at

right angles at root point p.

The conformal metric computed in Section 5.2 is flat on all ofMc ,

so its components can be laid out in the plane [Springborn et al.

2008], isometrically with respect to the metric, to obtain F (Mc ).

5.5 Padding

The padding operation described in Section 3.4 can be performed

using piecewise-linear maps, as illustrated in Figure 14. We start

with inserting a straight (in flat/parametrization metric) line into

the mesh M along a segment, requiring that no vertex is contained

in the strip this line delineates. This line cuts the edges and creates

new vertices; resulting polygons are triangulated. Then, stretch

and lateral shift can be performed by moving those vertices that

are on the segment. Note that, as no vertices lie in the strip, the

mesh within the rectangular strip is a simple triangle strip and

laterally translating the segment vertices does not cause triangle

inversions as long as their order is preserved—which is the case

with the reparametrization ϕ (cf. Appendix D).

We note that the resulting seamless parametrization is not of

immediate practical use: The scale distortion involved in the con-

formal map together with the additional padding-induced stretch-

ing often leads to high parametric distortion. This map, however,

provides a valid (locally injective and seamless) starting point re-

quired by robust optimization methods that can convert it to a

Fig. 15. Left: example map generated on a topologically complex surface.

Right: Example map generated with geometrically non-meaningful cone

prescription (here: 50 randomly distributed cones of curvatures π and −π )

to illustrate the method’s robustness.

low-distortion parametrization (to the extend permitted by the

cone prescription). We emphasize that for non-convex problems,

the ability to obtain a feasible starting point is critical: first, this

is, in general, the only way to guarantee that a solution is found;

second, this allows one to use robust optimization techniques that

always stay in the feasible region during optimization.

5.6 Distortion Optimization

For the optimization of the seamless padded map, in our imple-

mentation, we use the symmetric Dirichlet energy together with

efficient quadratic proxies as described in Rabinovich et al. [2017].

This method preserves local injectivity during optimization by de-

sign; we additionally include linear seamlessness constraints to

preserve seamlessness of the map:

�ei = Rki j
π
2 �ej for each pair (i, j ) of identified mesh edges,

where �ei is the edge vector of edge i in the parametric domain,

and Rki j
π
2 is a rotation by ki j

π
2 , where the constant integer ki j is

determined by the edges’ relative initial orientation in the domain.

We use the common symmetric Dirichlet objective in the opti-

mization. In the context of specific applications, other application-

dependent objectives, not focussing on distortion alone, may be

relevant. For instance, for seamless global texturing, the seamless

parametrization would have to be quantized (resulting in partic-

ular in an integer grid map with discrete translations in the tran-

sitions across cuts) [Ray et al. 2010]. The same is true for quad

mesh generation or for constructing domains for spline spaces.

Techniques to perform such quantization rely on using seamless

parametrizations as a starting point [Campen et al. 2015; Lyon et al.

2019], of the type our method provides. It can also be useful to in-

clude directional terms in the objective, to support alignment to

principal curvature or other directions. Finally, potential inaccura-

cies in the results’ seamlessness due to numerical precision limits

could be eliminated [Mandad and Campen 2019].

6 EXAMPLES

We demonstrate our implementation of the algorithm described in

Section 5.1–5.6 on a number of examples.

Figure 16 shows a visualization of the seamless parametriza-

tions constructed on models from the dataset provided by Myles

et al. [2014]. We employed the cone position and angle pre-

scriptions included in this dataset. Figure 15 demonstrates the
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Fig. 16. Visualization of a variety of locally injective seamless parametrizations obtained using our method. Note that the cut is visible in the checkerboard

texture, because the seamless parametrization is not a quantized seamless parametrization.
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Fig. 17. A locally injective seamless map generated on an 80-torus.

algorithm handling topologically complex surfaces as well as ran-

domly prescribed singularities. In all cases locally injective seam-

less global parametrizations were obtained. Note that seamless

does not mean that cuts are not visible in these checkerboard visu-

alizations; for this the maps would additionally need to be quan-

tized [Campen et al. 2015]—a process for which our method pro-

vides a suitable initialization.

To explore the numeric limits of our implementation, we applied

it to N -tori, for increasing N . For an 80-torus, as depicted in Figure

17, the implementation succeeds; for a 100-torus, we are still able

to obtain an initial seamless map—however, with a level of distor-

tion that state-of-the-art local injectivity preserving optimization

methods prove to have trouble with, due to numerical precision

issues. For even larger N , the computation of the constrained con-

formal map starts to suffer from occasional numerical issues (e.g.,

step size going down to numerical zero) as well. Investigation of

the numerical aspects of map optimization in high distortion cases

is an important direction for future research.

7 CONCLUSION AND FUTURE WORK

This article provides a general path to obtaining seamless

parametrizations with a given set of cones. On a conceptual level,

the approach is simple: pad a parametrization that maps cut

segments to straight lines, with padding determined by solving

a linear system. Our algorithm demonstrates that for (almost)

any user-specified or automatically computed choice of cones a

corresponding global parametrization can be constructed, without

introducing additional cones.

A limitation of our approach in its current form is that it does not

take into account the holonomy angles on global homology loops

(in addition to cone angles), which, for instance, is important for

parametrizations following a global guiding field. We expect that

by using different forms of cut graph construction, based on given

global holonomy angles, many of the ideas will be applicable to

such a setting as well; we plan to address this in a separate article.

Other directions of future work include generalization to sur-

faces with boundaries as well as aligning to tagged feature curves

or other prescribed directions on the surface.

In the smooth setting, we have constructively shown the exis-

tence of a locally injective, seamless parametrization. In practice,

numerical optimization routines bring about additional challenges

related to precision limits, which here affects the discrete con-

formal map computation. A potential path could be the replace-

ment of this initial map computation with a different technique—

perhaps exploiting the fact that conformality is not actually

required.

APPENDICES

A ILLUSTRATIVE EXAMPLE

We consider the simplest example: a torus with two cones, k0 = 2,

k1 = 6, i.e., cone angles π and 3π , shown in Figure 18.

Cut Graph. We cut the surface into a 2-corner and a 6-corner

component (cf. Figure 18, top). The cut graph was embedded in

Fig. 18. Top left: genus 1 surface with cut graph consisting of 4 branches

(yellow, green, red, blue). The cut graph cuts the surface into two compo-

nents with 2 and 6 corners, respectively, i.e., with a total of 8 boundary seg-

ments (two corresponding to each branch). Top right: schematic depiction

of the two components under a cone metric with rectilinear boundary con-

sisting of straight segments (here shown as curved arcs) meeting at right

angles. Middle left/right: planar flattening of the two components implied

by the metric (after cutting to cones—dashed). The numbering of segments

is used to set up the system for padding widths wi . Bottom left/right: the

padded flattening (padding, indicated by arrows, in white).

the surface in such a way that the total cone curvature contained in

each component is compatible with the number of corners in terms

of Gauss-Bonnet: a cone with k0 = 2 lies in the 2-corner region, a

cone with k1 = 6 in the 6-corner region.

Cone Metric. We compute a cone metric on each of the two com-

ponents (e.g., conformal, given by a pointwise scale factor), which

is flat everywhere except at the cones, where it has the prescribed

curvature. In addition, we require the boundary to be geodesically

straight at all boundary points except for the corners, where it

forms right angles under the metric.

Metric to Parametrization. If we add cuts connecting all cones to

the boundary (indicated with dashed curves), then this cone metric

is flat in the interior and corresponds to a global parametrization
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of the torus, with two charts (cf. Figure 18, middle, left, and right).

The image of each of the two maps is a domain with rectilinear

boundary, consisting of straight segments meeting at right angles

(excluding the cuts to the cones). As the angle between any two

segments is an integer multiple of π/2, this parametrization is ro-

tationally seamless, but it may have a jump in scale across cuts.

In particular, two segments corresponding to the same cut graph

branch—here (1,7), (2,5), (3,6), and (4,8)—may have different lengths

in general.

Equalization by Padding. To obtain a seamless parametrization,

we equalize the lengths of identified pairs of segments. This is

achieved by adding padding; i.e., we extend the parametric domain

by shifting straight segments in orthogonal direction (cf. Figure 18,

bottom). For each segment i , numbered sequentially around each

component, �i , i = 1 . . . 8, is its parametric length. For a segment

i , after padding its length becomes �i +wprev(i ) +wnext(i ) , where

prev(i ) and next(i ) are previous and next segment indices around

the component, andw j is the padding width for segment j. Equat-

ing the post-padding lengths of all four pairs of identified segments

yields the following four equations in this example:

�1 +w2 +w6 = �7 + 2w8, �2 +w1 +w3 = �5 +w4 +w6,

�3 +w2 +w4 = �6 +w1 +w5, �4 +w3 +w5 = �8 + 2w7,

where �i are the known segment lengths, wi are the unknown

padding widths. The matrix of this equation system has the form

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0 1 0 −2

1 0 1 −1 0 −1 0 0

−1 1 0 1 −1 0 0 0

0 0 1 0 1 0 −2 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and the right-hand side is b = [�7 − �1, �5 − �2, �6 − �3, �8 − �4]T ,

i.e., parametric length mismatches of identified segments. To

equalize segments lengths, we need to find a solution of the system

Aw = b, wherew is the vector of padding widths, such thatw ≥ 0.

This non-negativity condition is important to guarantee that the

domain does not degenerate through padding. Observe that A has

full (row) rank, which ensures that the system has a (possibly non-

unique) solution. Observe further thatA1 = 0 in this case, i.e., after

computing an arbitrary solution, we can obtain a non-negative so-

lution by adding a sufficiently large constant. More generally, note

that A is determined solely by the choice of the cut graph com-

binatorics. For instance, without the blue or without the yellow

branch, the cut graph (cutting the surface to a single topological

disk in these cases) would yield a system that does not have a non-

negative solution w for every possible b.

Seamless Parametrization. Once the padded domain is obtained,

we remap the original image onto this domain. This is done by

stretching outwards thin strips running along the segments to

cover the added space in the rectangular regions padded onto the

domain, yielding a seamless global parametrization.

B PROOFS OF EQUALIZABILITY

B.1 Genus 3+

This proof is constructive, yet it is only intended to prove feasibil-

ity. In practice, a simple linear system solve can be used to obtain

a solution instead (cf. Section 5.3), while our theorem ensures that

this linear system solve always succeeds.

Non-Fourfold Case. The hole chain cut graph G, together with

the extra path, cuts M into two components M ′0 and M ′1, neither of

which has its number of segmentsmk divisible by 4. The boundary

of at least one of these components contains a segment of a hole,

located between the two parts of an odd-couple (cf. Section 4.1);

let this component be M ′1.

Our proof is based on the observation (Lemma B.1) that for

each of the domains M ′
k

, it is possible to attain arbitrary tar-

get segment lengths �̃i , i = 0 . . .mk − 1, using (possibly negative)

padding. Hence, it is, in particular, possible to choose padding

widths such that lengths of mated segments match (Lemma B.3).

If there were no T-nodes, then such (possibly negative) equaliz-

ing padding widths could easily be transformed into non-negative

ones: Adding a sufficiently large constant c to each yields non-

negative padding widths while preserving equalization (each seg-

ment length increases by 2c). Cut graphs with T-nodes result in

complex segments on the cut, and these are not mated in pairs.

Equalization is preserved if we add c to all padding widths except

those of the two extra path segments—but then these two would

remain possibly negative. This requires performing two interme-

diate modifications:

First, we make both extra path segments’ padding widths non-

negative (Lemma B.4). This leads to one equalization equation be-

ing violated. We then show that, exploiting the presence of an odd-

couple, a further modification of padding widths (Lemma B.5) can

restore equalization (Proposition B.1).

Remark:. While it may be possible to construct cut graphs with-

out T-nodes for any configuration of genus and cones, and thereby

simplify the proof, this would require the consideration of (possi-

bly many) further special cases, with more than two components,

depending on genus and cone curvatures. We choose the version

leading to a simpler construction algorithm with fewer special

cases.

We first establish two auxiliary results for an individual compo-

nent M ′
k

, omitting the subscript k . We number segments cyclically

along the component’s boundary, with numbers from 0 to m − 1.

Let Bw = d , withm ×m matrix B, be the length adjustment system

formed by equations wi−1 + �i +wi+1 = �̃i (with index arithmetic

done mod m), for initial lengths �i and arbitrary target lengths �̃i .

Lemma B.1. There are padding widthswi ∈ R satisfying Bw = d .

Proof. The system matrix B is anm ×m circulant matrix, with

associated polynomial f (x ) = x + xmk−1 = x (xmk−2 + 1) [Davis

2012]. It is full rank whenever f (e j/mk 2π i) � 0, for j = 0 . . .mk − 1,

as its determinant is given by the product of these values (f onmth

roots of unity). It is straightforward to check that f (e j/m2π i) =

0 (for some j) requires e j (m−2)/mk 2π i = −1. This is equivalent to

2j (m−2)/m being odd, which in turn requires 4j/m to be odd, i.e.,

m must be a multiple of 4, contradicting the assumption m mod

4 � 0. �

Lemma B.2. For an arbitrary choice of index 0 ≤ j < m and an

odd number p, there are padding widths wi ∈ R with w j = 1 such
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that all equations of Bw = 0, except the (j + p modm)-th equation,

are satisfied.

Proof. Choose w j+p+1, w j+p+3, w j+p+5, . . . , w j+p−1 alternat-

ingly as 1 and −1 (where index summation is done mod m). Note

that ifm is even, this sequence contains every other padding width,

if m is odd, it contains every padding width, as illustrated below.

In both cases, due to m mod 4 � 0, this sequence is of odd length.

Thus, w j+p+1 = w j+p−1. As p is odd, w j is part of the sequence;

we choose the alternating sign such that w j = 1. As each segment

i � j + p has its previous and next segments either both not padded

or padded with alternating signs, its length is not changed, i.e.,

padded length �′i = �i , but �′j+p = �j+p ± 2. �

Combining the result of Lemma B.1 for both components yields

the following lemma.

Lemma B.3. The equalization system Aw = b induced by a hole

chain cut graph with admissible extra path has a (possibly negative)

solution w .

Proof. Choose the target length �̃i = 1 for each simple seg-

ment i (consisting of one boundary curve), and �̃i = r for each

complex segment consisting of r boundary curves (with r − 1 flat

joints). Note that for our hole chain cut graph r = 2 or r = 3 (when

mk = 2 for some k). According to Lemma B.1, there are padding

widths w0 for M ′0 and w1 for M ′1 such that padded lengths �′i = �̃i ,

and because lengths �̃i match for mated segments, these padding

widths w = [w0,w1] are equalizing, thus Aw = b. �

We now show that this initial, possibly negative solution can, in

multiple steps, be transformed into a non-negative solution.

Lemma B.4. Consider the equalization systemAw = b induced by

a hole chain cut graph with admissible extra path. Let a, b be the

segments of the extra path, q an arbitrary hole segment of M ′1. There

are padding widths w̄ with w̄a = w̄b = 0 such that all equalization

equations of Aw̄ = b except for the one containing �q are satisfied.

Proof. Lemma B.3 yields padding widths satisfying Aw = b,

but possibly with wa � 0 or wb � 0. Let w ′i = wi , for all i , except

for w ′a = 0, w ′
b
= wb +wa (i.e., we move all extra path padding to

one side of the path). The equationAw ′ = b still holds, because the

padding widths of segments a andb do not appear individually, but

only as sum in these Equations (5), and w ′a +w
′
b
= wa +wb .

Observe that due to b being an extra path and q a hole seg-

ment index (and the extra path being connected to a hole, cf.

Definition 4.2), at least one of the two (cw or ccw) cyclic index dis-

tances along the boundary of M ′1 is odd, thus there is an odd num-

ber p such that (b + p mod m1) = q. We now apply Lemma B.2

Fig. 19. Illustration of a hole segment q between two segments of an odd-

couple d–e (here with 5 hole segments between them). At c4 an exemplary

extra path connection to the hole chain is depicted.

to the component M ′1 to make the padding width of b zero. For

the choice j = b and the odd number p, this lemma yields padding

widths w ′′i for M ′1 (for each segment i of M ′0, we set w ′′i = 0) with

w ′′
b
= 1,which leave all segment lengths unchanged except for that

of segment q. We obtain padding widths satisfying the lemma as

w̄i = w
′
i −w

′
b
w ′′i . �

Now, we show that a further modification allows us to find

padding width that also satisfies the equation containing �q . This

is the only step that requires using the assumption that the hole

chain cut graph contains an odd-couple (cf. Section 4.1).

Lemma B.5. Suppose the equalization system Aw = b is induced

by a hole chain cut graph with admissible extra path and an odd-

couple. Let q be an arbitrary hole segment of M ′1 between the mated

segments d and e of the odd-couple in the hole chain. Then for any

δ ∈ R there are padding widths w with wa = wb = 0 such that the

padded length �′q = �q + δ , while all other lengths remain unchanged

or are changed by the same amount for each group of mated seg-

ments, i.e., Aw = 0 except for the equation including �q .

Proof. Let d0, . . . ,dr be the sequence of connectors of the hole

chain between an odd-couple pair of holes hd , he . Note that r is

odd. Each connector has two sides; let c0, . . . , cr be the sides on

that side of the hole chain where the hole segment q is located.

Then there are ci , ci+1 such that segment q lies between them

(Figure 19).

Let vc j = −1i−j 1
2δ , j = 0, . . . , i , and vc j = −1i−j+1 1

2δ , j = i+
1, . . . , r . Each connector side c j corresponds to one segment sc j

or, in case the extra path connects to such a side and splits it,

two segments sc j and s̄c j (for example, c4 in the figure below).

Let wsj = vc j (and in case of a connector split by the extra path

also ws̄j = vc j ) for each c j , and zero for all other segments not

involved in connector sides c0, . . . , cr (thus in particular the ex-

tra path segments a, b). With these padding widths, we have �′q =
�q + δ , the lengths of mated segments d and e are either both in-

creased or both decreased by the same amount 1
2δ . All other hole

segments between d and e have their previous and next connec-

tor segment padded with opposite signs, preserving their lengths

�′i = �i —unless the extra path is connected to one of these holes:

suppose it is connected to the hole between c j and c j+1, then there

are two hole segments (separated by the extra path) between c j and

c j+1, and one’s length is increased by 1
2δ , the other’s decreased by

1
2δ ; as they (due to the T-node at the extra path) are mated in com-

bination, these values cancel in the equalization equations. �

Finally, we obtain a non-negative solution of the equalization

system, as required.
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Fig. 20. Left: boundary ∂F (Mc ) (black) laid out in the plane after cutting

to cones (blue). Red indicates a cone with ki = 8, i.e., curvature Θ̂i = −2π

(parametric angle 4π ) for which a cut is superfluous. Right: The segment

gap Δ vanishes if all cones are fourfold, thus ∂F (Mc ) is a rectilinear

polygon.

Proposition B.1. The equalization system Aw = b induced by a

hole chain cut graph with admissible extra path and an odd-couple,

has a non-negative solution w .

Proof. Let q be a hole segment of M ′1 that lies between two

segments of an odd-couple. For this q, Lemma B.4 asserts there

are padding widths w̄ with w̄a = w̄b = 0, satisfying all but one

equalization equation. Let δ be the error, i.e., the difference be-

tween the padded length �′q and the padded length of q’s mate(s).

For these q and δ , Lemma B.5 yields padding widths ŵi such that

w ′i = w̄i + ŵi satisfy all equationsAw ′ = b, because with this addi-

tion, the padded length �′q of segmentq is adjusted to cancel the er-

ror δ , while equalization of all other mated segments is preserved,

and w ′a = w
′
b
= 0. Now non-negative equalizing padding widths

can be derived: Let 1
′ be the vector of ones, except for two zeroes

at entries a and b. Then A1
′ = 0, because each Equation (3)/(5),

thus each row ofA, contains two (not necessarily distinct) padding

width variables with positive sign and two padding width variables

with negative sign—and possibly further entries −wa , −wb , which,

however, are zero in 1
′. Let λ = minw ′i . Then padding widths

w = w ′ − λ1
′ are non-negative and, due to Aw = Aw ′ − λA1

′ = b,

equalizing. �

Fourfold Case. In this case, the cut graph contains no extra cut

path, and we have a single component M ′ with the number of seg-

ments m divisible by 4. As shown in the proof of Lemma B.1, sys-

tem matrix B does not have full rank in this case. Its upper left

(m − 2) × (m − 2)-submatrix, however, has full rank (as it is a tridi-

agonal Toeplitz matrix), thus B−, which is B with the last two rows

removed, is a (rectangular) matrix with full row rank. This im-

plies we can obtain padding widthsw with B−w = 1 − �−, i.e., they

bring all segments but the last two to unit length.

In the case of fourfold cones, the transitions across the cut graph

extension T (cf. Section 3.3) are rotations by a multiple of 2π
(= identity); as a consequence, the cut extension T can actually

be omitted. This implies that the boundary of the flattening F (M ′)
is formed exclusively by the segments and is entirely rectilinear,

as illustrated in Figure 20 (right). Without the loss of generality,

we assume that all even-index segments are laid out horizontally

and all odd-index segments vertically. Counterclockwise around

the boundary ∂F (M ′), horizontal segments alternate between pos-

itive and negativeu-directions, and vertical segments alternate be-

tween positive and negative v-direction. The fact that ∂F (M ′) is

Fig. 21. Special cut graph patterns to be used to guarantee equalizability

for genus 2 surfaces, depending on whether a subset of cones compatible

with a region (shaded) with 2, 3, 5, 6, or 7 corners is present.

(and after padding remains) a closed polygon then implies

∑

i=0, ...,m/2−1

−1i �2i = 0,
∑

i=0, ...,m/2−1

−1i �2i+1 = 0.

This, in turn, implies that if all even/odd segments but one have

unit length, the remaining one has unit length as well. Hence,

the last two conditions of B are, in the fourfold case, satisfied

automatically if all other conditions are satisfied. We conclude

that B−w = 1 − �− implies Bw = 1 − �. The vector w may con-

tain negative values, but we can add an arbitrary constant shift

w∗ = w + λ1, because Bw∗ = μ1 − � (with μ = (2λ + 1)), leading to

Aw∗ = b and w∗ ≥ 0 for a sufficiently large λ. �

B.2 Genus 1

The equalization system for the genus 1 cut graph pattern is

w1 +w5 −w2 −w4 = �3 − �0
w6 +w6 −w3 −w5 = �4 − �7
w0 +w2 −w7 −w7 = �6 − �1
w1 +w3 −w0 −w4 = �5 − �2

One can easily verify that the system matrix has full row rank,

and that it has positive vectors (e.g., 1) in its kernel, thus has a

non-negative solution for any righthand side.

B.3 Genus 2

The five different cut graph patterns covering all possible cone

choices for genus 2 are depicted in Figure 21. One can easily verify

explicitly that their equalization system matrices all have full row

rank, and that they have positive vectors (e.g., 1) in their kernel,

thus have non-negative solutions for any righthand side.
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2 corners: 7 corners:
w1 +w7 −w13 −w19 = �12 − �0 w1 +w23 −w11 −w13 = �12 − �0

w1 +w3 −w17 −w19 = �18 − �2 w2 +w4 −w8 −w10 = �9 − �3

w5 +w7 −w13 −w15 = �14 − �6 w14 +w16 −w20 −w22 = �21 − �15

w8 +w10 −w20 −w22 = �23 − �11 w0 +w7 −w0 −w6 = �23 − �1

w0 +w2 −w0 −w6 = �7 − �1 w3 +w17 −w18 −w21 = �22 − �2

w2 +w17 −w11 −w16 = �8 − �3 w3 +w17 −w16 −w21 = �20 − �4

w20 +w22 −w21 −w21 = �9 − �4 w7 +w11 −w8 −w10 = �19 − �5

w6 +w15 −w11 −w16 = �10 − �5 w13 +w23 −w14 −w22 = �18 − �6

w12 +w14 −w12 −w18 = �19 − �13 w1 +w5 −w2 −w4 = �17 − �7

w5 +w14 −w4 −w23 = �20 − �15 w9 +w19 −w15 −w20 = �16 − �8

w8 +w10 −w9 −w9 = �21 − �16 w9 +w19 −w15 −w18 = �14 − �10

w3 +w18 −w4 −w23 = �22 − �17 w5 +w12 −w6 −w12 = �13 − �11

3 corners: 6 corners:
w1 +w19 −w9 −w11 = �10 − �0 w1 +w10 −w17 −w26 = �16 − �0

w5 +w7 −w16 −w18 = �17 − �6 w2 +w4 −w23 −w25 = �24 − �3

w2 +w4 −w13 −w15 = �14 − �3 w7 +w9 −w18 −w20 = �19 − �8

w0 +w9 −w0 −w8 = �19 − �1 w11 +w14 −w27 −w30 = �31 − �15

w3 +w11 −w12 −w17 = �18 − �2 w0 +w22 −w0 −w21 = �10 − �1

w3 +w13 −w12 −w17 = �16 − �4 w3 +w29 −w8 −w28 = �9 − �2

w6 +w7 −w8 −w14 = �15 − �5 w3 +w29 −w15 −w30 = �11 − �4

w5 +w6 −w4 −w14 = �13 − �7 w22 +w26 −w23 −w25 = �12 − �5

w15 +w19 −w16 −w18 = �12 − �8 w17 +w21 −w18 −w20 = �13 − �6

w1 +w10 −w2 −w10 = �11 − �9 w8 +w28 −w15 −w27 = �14 − �7

w6 +w16 −w5 −w16 = �26 − �17

w13 +w19 −w12 −w24 = �25 − �18

5 corners: w13 +w19 −w14 −w31 = �27 − �20

w1 +w15 −w7 −w9 = �8 − �0 w6 +w10 −w7 −w9 = �28 − �21

w2 +w4 −w4 −w6 = �5 − �3 w1 +w5 −w2 −w4 = �29 − �22

w10 +w12 −w12 −w14 = �13 − �11 w12 +w24 −w11 −w31 = �30 − �23

w0 +w10 −w0 −w9 = �15 − �1

w3 +w6 −w7 −w13 = �14 − �2

w3 +w5 −w11 −w13 = �12 − �4

w2 +w5 −w1 −w11 = �10 − �6

w8 +w14 −w8 −w15 = �9 − �7

C PROOF OF CONE METRIC EXISTENCE

[Troyanov 1991] presents a general proof of cone metric existence

on closed surfaces. It “extends [ . . . ] to surfaces with (piecewise

geodesic) boundary,” but the extension is not spelled out. Cherrier

[1984] focuses on the case with boundary, but does not specifically

consider the relevant delta distributions of curvature. We provide

a proof tailored to our setting.

Let M ′ be one of the disk-topology connected components of

the cut surface (we will drop the index of the component in the

following). Consider the expansion M ′exp of M ′, obtained by join-

ing a copy of the geodesic disk of size ϵp in M centered at π (p),
to each boundary point of M ′. Multiple p ∈ ∂M ′ corresponding to

the same π (p) get separate copies of the disk centered at π (p) and

ϵp is chosen sufficiently small for each p so that M ′exp still has disk

topology.

To simplify the exposition, we assume that on the surface M the

branches of the cut form right angles—the proof can be extended to

arbitrary angles, as long as the curves are transversal, but requires

a more complex solution ϕ1 below, with additional cones at the

corners, as explained in more detail in Bunin [2008].

Consider a conformal map f from M ′exp to the plane (e.g., to a

disk). AsM ′exp has disk-topology, such a map exists. AsM ′ is in the

interior of M ′exp the map is conformal at the points of the bound-

ary ∂M ′. The conformal scale factor | f ′|, where f ′ is the complex

derivative of the map expressed in local complex coordinates on

the tangent plane, defines the conformal metric on Int( f (M ′exp)),

in particular, on all of f (M ′) = M ′′ including the boundary. Let γi ,

i = 1 . . .m, be the curves of the boundary of M ′′; these curves are

smooth, as the boundary ofM ′ is smooth, and meet at right angles.

We now construct on M ′′ a metric with the desired properties;

then the metric on M ′ is obtained by a pullback through f . As M ′′

is flat, the equation for the metric in the interior points x of M
simplifies to

Δϕ =
∑

j

Θ̂jδ ( f (pj ) − x ),

where Θ̂j is the target curvature at cone c j = (pj , Θ̂j ). If the ge-

odesic curvature at non-corner boundary points is given by a

smooth function κ, then we have the Neumann boundary condi-

tion

∂ϕ

∂n
= −κ,

which needs to be satisfied to obtain straight boundary edges in the

final metric. Note that κ may be discontinuous at the corner points

but it is still in L2. We can find a particular solution u1 satisfying

the Poisson equation on M ′′ without boundary conditions directly

as ϕ1 =
∑

j Θ̂j ln( |z − f (pj ) |) with singularities at f (pj ).
Then, we solve the Laplace equation Δϕ2 = 0, for ϕ2 with

smooth Neumann conditions ∂ϕ2/∂n = κ − ∂ϕ1/∂n. For this prob-

lem to have a solution, the Neumann boundary condition needs

to integrate to zero over the boundary. Observe that because the

domain M ′′ is flat, the integral of the geodesic curvature κ over

the boundary, with the sum of corner angles n π
2 added, must be

2π , i.e.,
∫
∂Ω

κds = 2π − n π
2 . In addition,

∫
∂Ω

∂ϕ2/∂nds =
∑

j Θ̂j , by

the Gauss theorem. Finally, note that by the cut graph admissibility

assumption on the number of corners, 2π − n π
2 −
∑

j Θ̂j = 0, i.e.,

the integral condition for the Neumann problem is satisfied. There-

fore, the problem has a unique, up to a constant, solution. This so-

lution is in H2 (and, by Sobolev Lemma, C0 up to the boundary)

for domains with piecewise smooth boundary and convex corners

between curves (cf. Grisvard [1985], p. 174). The sum ϕ = ϕ1 + ϕ2

satisfies the Poisson equation and boundary conditions. The met-

ric ϕ is nonsingular at the boundary, therefore it is conformal, and

the angles between boundary curves are preserved. We conclude

that the pullback of this metric to M ′ is the needed metric.

D MAP PADDING

As laid out in Section 3.4, map padding consists of the application

of stretch maps to rectangular regions, and lateral shifts within

these. To define these precisely, we, w.l.o.g., consider the case of

a horizontal segment sj (aligned with the u-axis in (u,v ) coordi-

nates) to be padded by w j in positive v direction, as illustrated in

Figure 5—the other cases (negative v , and positive/negative u) are

handled analogously.

In the case of a segment split by T , we assume that T (which

can be chosen freely) meets the segment at a right angle with

a straight cut in the parametric domain. Then both parts can be

treated separately using the following operations without special

case handling—except for the same rectangle thickness being used

for both parts.
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Stretch. Let τj be the thickness (here: the height) of rectangle

Rj , and (uj min,vj min) the coordinates of the lower left corner of

Rj . The map дi applied to the strip to perform the stretching is a

simple one-dimensional scaling by factor oj =
w j+τj

τj
:

дj : (u,v ) �→ (u,vj min + oj (v −vj min)). (7)

Shift. We apply a deformation (lateral shift) within a rectangle

R
p
j that leads to a (piecewise) constant speed parametrization of the

segment sj . We use a simple blend (linear in v) between the map

ϕ j : [uj min,uj max]→ [uj min,uj max] that reparametrizes segment

sj to (piecewise) constant speed (applied at the top of the strip) and

the identity map u �→ u (applied at the bottom):

r j : (u,v ) �→ (tϕ j (u) + (1 − t )u,v ), (8)

where t = (v −vj min)/τj is the normalized relative v-coordinate

within R
p
j . ϕ j is a constant speed reparametrizaton for simple seg-

ments. For complex segments it is with piecewise constant speed,

constant per boundary curve the segment consists of, such that

the lengths of these boundary curves after reparametrization are

in the same ratio as the padded lengths of their mates.

One easily verifies that r j is injective: the determinant of its

Jacobian is det J (u,v ) = (∂ϕ j/∂u (u) − 1) t + 1, and due to 0 ≤ t ≤ 1

and ∂ϕ j/∂u (u) > 0 (as the scaled arc-length reparametrization is

non-degenerate and orientation preserving) it is always positive.

Proof of Proposition 3.3. F is rotationally seamless, in par-

ticular locally injective and continuous (on Mc ). If Fp,m is con-

tinuous, then so is f (p,m+1) , because дm+1 is continuous and it is

identity on the interface between Sm+1 and the rest of Mc . If F s,m

is continuous, then so is F (s,m+1) , because rm+1 is continuous and

it is identity on the interface between Sm+1 and the rest of Mc .

It follows that F s is continuous. Analogously, as дj and r j are in-

jective, local injectivity is preserved for F s . Both types of maps,

дj and r j , preserve the straightness and the orientation of all seg-

ments and therefore the pairwise angles between them, thus F s

is rotationally seamless like F . As angles between boundary curve

images are not affected, cone angles are preserved as well. Each

boundary curve segment that sj consists of is parametrized with

constant speed by F s, j by construction. As sk with k � j is iden-

tity on sj (more precisely: that part of sj contained in Rk and thus

potentially affected by sk ), F s (sj ) = F s, j (sj ). �
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