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We present a novel method to generate quad meshes for non-rigid objects. Our method 
takes into account the geometry of a collection of key poses in one-to-one correspondence 
or even an entire animation sequence. From this input, on a common computational 
domain, an extremal metric is computed that captures the local worst case behavior in 
terms of distortion as the object undergoes deformation. An anisotropic, non-uniformly 
sized quad mesh is then generated based on this metric. This mesh avoids undersampling 
when deformed into any of the poses specified in the input and thus reduces artifacts. 
Hence, in contrast to previous approaches which target static geometry, our method aims 
to optimize the mesh’s adaptation to the shape for every pose expected during animation 
or deformation rather than for one specific reference state.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In recent years a variety of versatile methods for the automatic quadrangular remeshing of surfaces has been developed. 
These methods typically optimize the properties of the quad mesh, such as element size, anisotropy, orientation, and mesh 
connectivity, with respect to the specific given surface geometry. Note that this is appropriate only when dealing with rigid 
objects with static geometric properties. At the same time, it is common for quad meshes to be used in animation or 
simulation. In this case, while the quad mesh might be well adapted to a particular specific state or pose (based on which 
it was generated and optimized), it may be a poor match for other poses or states of deformation (cf. Figs. 1, 8, and 9).

We present a method that aims to produce quadrangulations adequate for every pose during deformation or animation, 
rather than optimal for a single pose (cf. Figs. 1 and 2). If known a priori, the deformation can be given as input in form of 
a complete surface animation sequence. Otherwise, the expected space of deformation can be outlined by a set of extremal 
key poses.

Based on one-to-one correspondences between the key poses or animation frames we analyze the deformation structure 
and construct an extremal metric corresponding to the worst-case local metric behavior at every point of the surface. 
Furthermore, information about preferable mesh element orientation is determined jointly over the expected deformation. 
Together, this allows us to generate an adapted quad mesh with anisotropic element sizing that avoids undersampling 
artifacts due to being too coarse in any region for any pose when being deformed.
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Fig. 1. Illustration of our deformation-aware mesh generation method in contrast to a standard, static method (Jakob et al., 2015). Three poses (left) are 
taken as input. The standard method optimizes the mesh with respect to the metric of one specific pose, P0; ours uses an extremal metric it computes 
over all poses. In the top row, the resulting quad mesh deformed into the poses other than P0 exhibits artifacts, especially in areas of significant stretching 
and bending (red). Our quad mesh (bottom row) shows better behavior (despite even having a slightly lower total number of elements) in these poses. 
Notice that this comes with an increased number of irregular vertices; these are induced by the stronger local variation in element size and shape due to 
deformation-awareness. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 2. The same quad mesh Q in four different poses for which it was jointly optimized using our technique with extremal metric. Notice, for instance, 
the higher density of the mesh in the left pose on the knees (because they get bent strongly in poses P1 and P2), under the arm (because it gets stretched 
in pose P2), and on the belly (because poses P2 and P3 are more corpulent).

2. Related work

Quad meshing An account of modern quadrangular surface remeshing techniques is given in a recent survey (Bommes et 
al., 2013b). Parametrization based techniques have received the most attention in recent years for their flexibility and result 
quality (Kälberer et al., 2007; Bommes et al., 2009, 2013a; Pietroni et al., 2011; Liu et al., 2011; Myles and Zorin, 2013;
Panozzo et al., 2014; Ebke et al., 2014; Campen et al., 2015; Campen and Zorin, 2017). These methods all optimize the 
mesh properties for one specific surface pose.
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A step towards taking surface deformation or animation into account has been made by Marcias et al. (2013): the orien-
tation of mesh elements is chosen based on the principal directions of local surface stretch during deformation. The work 
by Meng and He (2016) considers combined feature determination over multiple poses, again to influence mesh element 
orientation. Our contribution is orthogonal and complementary to these works: we focus on the determination of appropri-
ate element sizing, anisotropy, and shear; it can be used in conjunction with these techniques that determine orientation, as 
well as other, e.g. principal curvature direction based techniques, as detailed in Section 5. Interactive, user-assisted quad-
rangulation techniques (Takayama et al., 2013; Marcias et al., 2015) are another option for mesh generation: the user can 
design the mesh taking knowledge about expected deformation behavior into account.

Cross fields A key component of quad remeshing techniques based on parametrization is the computation of 4-symmetric 
direction fields. These fields predetermine the parametrization’s singularities and thus the quad mesh’s irregular vertex 
structure, and provide directional guidance information for the parametrization’s isolines (which correspond to the quad 
mesh’s edges). Key contributions in this context concern the efficient handling of the 4-symmetry (Hertzmann and Zorin, 
2000; Palacios and Zhang, 2007; Knöppel et al., 2013), control over the field topology (Li et al., 2006; Ray et al., 2008;
Bommes et al., 2009; Crane et al., 2010), and generalization to non-orthonormal directions (Panozzo et al., 2014; Diamanti 
et al., 2014; Jiang et al., 2015). A recent survey (Vaxman et al., 2016) provides a detailed overview of the topic.

Custom metrics In some instances of previous work properties of cross fields or parametrizations are optimized with re-
spect to a metric different from the standard Euclidean metric. For instance, the surface under consideration can be virtually 
smoothed in this way, geometrically (Ray et al., 2009) or even topologically (Ebke et al., 2014); the shape operator can be 
used as metric tensor to improve approximation properties (Kovacs et al., 2011; Heckbert and Garland, 1999). Also user-
designed metrics can be taken into account, e.g. for the creation of cross or frame fields with spatially varying magnitude 
and skewness (Jiang et al., 2015; Pal et al., 2014).

Deformation-aware meshing A number of works have addressed the problem of generating triangle meshes for non-rigid 
models. They proceed by decimating an overly dense mesh, taking an animation sequence or individual key poses into 
account (Mohr and Gleicher, 2003; DeCoro and Rusinkiewicz, 2005; Landreneau and Schaefer, 2009; Lee et al., 2011). 
This is generally accomplished by averaging the employed decimation error functions over the animation frames or 
poses. In Section 4.1, we discuss why direct averaging can be inadequate in our context. Several authors proposed tech-
niques to dynamically adjust the mesh connectivity during animation (Kircher and Garland, 2005; Huang et al., 2006;
Payan et al., 2007) for application scenarios where this is appropriate. We focus here on the case of a quad mesh with static 
connectivity, because 1) this is more generally applicable in the context of animation and simulation and 2) the set of possi-
ble connectivity changes in quad meshes is less rich compared to the triangle case (Peng et al., 2011; Bommes et al., 2011;
Tarini et al., 2010), even more so if not only proper connectivity but element quality is taken into consideration.

3. Overview

The input to our method is a set of N surfaces Pi , called poses, with pairwise diffeomorphisms hij : Pi → P j mapping 
between them. When the poses are obtained through deformation from a reference pose, say P0, such maps are of course 
immediately available.

The sequence of poses can be the frames of a complete animation sequence, or a set of key poses which ideally are 
extremal, in the sense that other expected deformation states are likely to lie within the convex hull, i.e. could be obtained 
by interpolation between some of the key poses. The input order of poses plays no role in our method.

With existing quad meshing algorithms one could generate a quad mesh optimized for an individual pose Pi (based on 
its Euclidean metric, or any other shape related metric, cf. Sections 2 and 4). By means of the maps hij , one can deform 
this quad mesh into a quad mesh for any other pose P j . However, it may be unfit for those poses, with artifacts due to 
undersampling, stretch, or shear, as illustrated in Fig. 1.

In our approach we express the target metrics of the individual poses on one common computational domain and com-
bine them into an extremal metric that expresses what quad mesh element sizing and anisotropy is appropriate for all 
poses, avoiding undersampling in all directions, for all poses (Section 4). Intuitively, elements are made smaller in regions 
that get stretched in some pose, so they do not become overly large when deformed accordingly. Similarly, information about 
preferred element orientation (based on shape-derived properties such as principal curvature directions, or on deformation-
derived properties such as principal stretch directions, Marcias et al., 2013) is combined on the common domain (Section 5). 
A quad mesh can then be optimized with respect to this metric and orientation information using (variations of) state-of-
the-art techniques (Section 6). We demonstrate that this strategy yields meshes which behave better when undergoing 
deformation (Section 7). Fig. 3 shows a visual overview.

4. Deformation-aware metric

In order to enable control over the sizing and anisotropy of mesh elements one can approach the quad mesh generation 
problem as follows: let a standard quad meshing method simply aim for unit square quads, while adjusting the notion of 
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Fig. 3. Overview of our method: Multiple poses or frames (P0, P1, P2) are taken as input. Metrics gi and orientation fields di are computed per pose. The 
metrics are consolidated into an extremal metric gmax on a common domain. Orientation fields are combined through appropriate averaging operations. 
Based on this a cross (or frame) field and a field guided parametrization are computed. Finally, a quad mesh is extracted from the parametrization.

Fig. 4. The effect of the metric choice gi = sS T
i Si on an example model.

“unit square” by means of a custom metric on the surface. For a background on the concepts of differential geometry used 
in the following, we refer to the introduction by Frankel (2011).

Let gi be a Riemannian metric tensor field on pose Pi . As usual, for a choice of local tangent space bases these quadratic 
forms can be represented by matrices, gi(x) ∈ R

2×2, for every point x on Pi .
The following types of metrics are of particular relevance:

• gi = sI uniform, isotropic
• gi = si(x)I non-uniform, isotropic
• gi = Ai(x) non-uniform, anisotropic

Here I ∈R
2×2 is the identity, s ∈R is a global scaling factor, si : Pi → R is a scalar sizing field on Pi , and Ai : Pi →R

2×2

is an arbitrary field of positive definite quadratic forms, i.e. symmetric positive definite matrices, on Pi .
Anisotropically sized elements are particularly of interest to minimize and equalize discretization errors. A choice of 

gi = sSi , where Si is the shape operator on Pi (whose eigenvalues and eigenvectors are the principal curvatures κmin and 
κmax and their directions dmin and dmax, respectively) is known to optimize the geometric approximation of the surface 
(Heckbert and Garland, 1999) by the resulting mesh in the limit of small quads. A choice of gi = sS T

i Si (cf. Fig. 4) is known 
to optimize approximation in terms of equalized surface normal error (Kovacs et al., 2011). In practice, to ensure positive 
definiteness in regions of vanishing surface curvature, these can be regularized by adding ε I with ε > 0. More generally, for 
the approximation of arbitrary functions (surface signals), gi = sHi is L2-optimal (Nadler, 1986), where H is the function’s 
Hessian.
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Fig. 5. Visualization of metric tensors at random points as ellipses which are unit circles under the respective metric. The metric shown here is based on 
the shape operator S . Metric g1 on pose P1 is mapped to pose P0 as g01. Then g00 (=g0) and g01 are combined to gmax on P0 (which in this particular 
example is essentially equal to g01).

Fig. 6. The effect of the extremal metric gmax on a simple plane model, bent into different poses. Depending on whether only pose P0 (left), poses P0 and 
P1 (middle), or poses P0, P1, and P2 (right) are taken as input, the resulting quad mesh (shown deformed into the different poses below) will have its 
element sizing and anisotropy adapted accordingly. A metric based on shape operator S was used here, so element shapes are adapted to curvature: the 
most extreme curvature encountered locally in any of the poses determines the local element shape and size.

4.1. Metric consolidation

We can “transfer” the metric g j from P j to Pi as the pullback h∗
i j g j of g j by hij . Let J i j be the Jacobian of hij , then 

h∗
i j g j = Jᵀ

i j g j J i j . In this way we can, in particular, obtain the set of N metric tensors g0i := h∗
0i gi on P0 (where g00 := g0), 

cf. Fig. 5. Note that computing a quad mesh on P0 based on metric g0i and mapping the result to Pi via h0i would 
yield the same result as performing the computation on Pi based on metric gi (in a hypothetical exact setting, i.e. up 
to numerical or discretization effects). We are thus now able to perform computations targeted at specific poses Pi on a 
common computational domain; w.l.o.g. we choose P0.

Our goal is to compute a quad mesh that is not optimized for a specific pose, but for all poses. We thus create a new 
metric on P0 that takes all the metrics g0i into account. A simple choice is the average metric

gavg = 1

N

N−1∑
i=0

g0i (1)

defined on P0. This is akin to the average (or sum) error functions used in pose-aware triangle mesh decimation techniques 
(cf. Section 2). The problem with this averaging is that it implicitly weights local deformation states by how common they 
are in the pose set. For instance, consider a large set of poses of a character model where each pose is derived from a rest 
pose by exercising one joint to one of its extremes. In this case the average metric does hardly differ from the metric of the 
rest pose, because every surface region is in its rest state in all but one of the many poses.
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Extremal metric We thus propose the use of an extremal metric rather than an average metric. For the above example this 
means that the metric locally reflects the surface stretch experienced in the poses that deform a region the most, rather 
than the rest pose (cf. Figs. 5 and 6).

One needs to decide whether the metric should be extremal in a maximum or a minimum sense; intuitively, whether it 
should be sensitive to the largest stretching or the largest squeezing of the surface. For the purpose of meshing, the former 
is relevant, because stretching leads to undersampling, whereas squeezing only leads to unnecessarily fine sampling (which 
is only an issue if mesh simplicity is of highest priority). We thus define

g′
max(v, v) = N−1

max
i=0

g0i(v, v) (2)

for any tangent vector v . Notice that g′
max defined in this way is not a quadratic form, i.e. not a Riemannian metric, in 

general. We thus consider instead a tight bounding quadratic form gmax defined via

det(gmax)→min s.t. gmax(v, v) ≥ g′
max(v, v) for all v. (3)

4.2. Implementation details

The poses Pi are given as triangle meshes. We compute the necessary metric-related values per triangle or vertex of P0
as follows.

Computing the Jacobians J0i Let each triangle in each of the poses be equipped with a local 2D coordinate system. Let a, b, 
c be the coordinates of the three vertices of a triangle in P0. The Jacobian of h0i in this triangle is then computed as

J0i = [
h0i(b) − h0i(a) h0i(c) − h0i(a)

] [
b − a c − a

]−1
.

Depending on the mesh generation technique to be used, a metric defined on a per-triangle or per-vertex basis might 
be required. In the per-vertex case, per-vertex Jacobians can be interpolated from those of the incident triangles (after 
rotations about the respective axes nt × nv , aligning a triangle tangent plane, with normal nt , to the vertex tangent plane, 
with normal nv ).

Computing the shape operator S We estimate principal curvatures κmin,i , κmax,i and their directions dmin,i , dmax,i on a pose Pi
(Cazals and Pouget, 2003) (again with respect to local coordinate systems). Then Si = κmin,idmin,id

ᵀ
min,i + κmax,idmax,id

ᵀ
max,i .

Computing the extremal metric gmax While it is long known that the optimization problem (3) has a unique solution 
(Behrend, 1938; John, 1948), no simple technique to find it if N > 2 is available. Even if we just require the inequality 
to hold for a sample of directions v , non-trivial iterative solution techniques are necessary (Kumar and Yildirim, 2005). As 
we need to perform this for every single triangle, we use an approximation instead:

Each metric g0i can be written as g0i = λaidaid
ᵀ
ai +λbidbid

ᵀ
bi , where λai , λbi are the eigenvalues, and dai , dbi the eigenvec-

tors of g0i . We construct gmax = λadadᵀ
a +λbdbdᵀ

b , where the eigenvectors da and db are taken from gavg, and the eigenvalues 
λa , λb are computed as:

λa/b = N−1
max
i=0

λai(d
ᵀ
a/bdai)

2 + λbi(d
ᵀ
a/bdbi)

2. (4)

A simple calculation shows that we then have

gmax(da/b,da/b) = g′
max(da/b,da/b) = N−1

max
i=0

g0i(da/b,da/b),

i.e. the approximation is exact in the principal directions da and db . One can furthermore show (cf. Appendix A) that for 
other directions v , the approximation error is bounded: g′

max(v, v)/gmax(v, v) < 2, i.e. the underestimation of lengths is 
bounded everywhere and in any direction by a factor 

√
2. The approximation can thus easily be made conservative by 

scaling with a corresponding factor. This global scaling, of course, is without effect if the quadrangulation is performed with 
respect to a target mesh complexity rather than a specific target sizing, and might as well be omitted.

5. Element orientation

Often, orienting quad elements such that edges follow principal curvature directions, at least in significantly curved 
regions, is of interest (Bommes et al., 2009; Campen et al., 2016). Alternatively, the user may want to specify the orientation 
manually, usually in a sparse manner.

We can model such directional guidance objectives in a general way as follows. Let di be a tangent vector field on Pi
whose direction specifies the desired edge orientation (e.g. the minimum principal curvature direction or another direction 
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set by the user) and whose magnitude specifies the importance (e.g. it may be related to the local anisotropy of the surface, 
or be 0 in regions where there is no preference in terms of element orientation).

Let d0i := J i0di be the pullback of di by h0i on P0. Note that these directions can obviously be contradictory: d0i may 
differ from d0 j for i �= j. This, for instance, is the case if di and d j are principal curvature directions and the surface is bent 
differently in poses Pi and P j . In such cases we strive to align to these directions as well as possible by striking a balance.

To this end, we compute a weighted average of the directions specified by d0i , where the weights are dictated by the 
magnitudes ‖d0i‖. Here it is important to note that a cross field as well as a regular quad mesh, away from extraordinary 
vertices, has a 4-symmetric structure; whether we enforce element orientation according to a direction d, d⊥ , −d, or −d⊥
is irrelevant. Here d⊥ denotes a π

2 -rotated (in the tangent plane) version of d. This invariance to rotations by multiples of 
π
2 must be considered to obtain a proper average. For instance, averaging d and d⊥ should not result in (some multiple of) 

d + d⊥ , but in d (or any k π
2 -rotation thereof, k ∈ Z).

To achieve this invariance, we map the vector fields d0i to 4th-order tensor fields (Palacios and Zhang, 2007) which 
are inherently invariant to rotations by multiples of π

2 . In form of the so-called representation vector (Palacios and Zhang, 
2007), they can be averaged by simple vector addition:

d̄avg := 1

N

N−1∑
i

d̄0i,

where d̄ denotes the 4th-order tensor representation of d . The result is then mapped back to a vector field davg. Note that 
this, due to the involvement of the magnitude of d0i , is a weighted average. A very similar π

2 -symmetric averaging operation 
is performed in Marcias et al. (2013); some difference lies in that work using as final weight (i.e. magnitude of davg) the 
(weighted) average of the magnitudes of the d0i , regardless of how compatible or contradictory the individual directions are. 
With the formulation here, the weights (encoded in the magnitude of the d̄0i ) are attenuated depending on how strongly 
the individual directions differ.

5.1. Implementation details

Curvature guidance Some binary feature filters have been proposed in the past (Bommes et al., 2009; Nieser et al., 2012;
Campen et al., 2016), that can be used to identify salient regions on meshes. We can apply them per pose Pi and set the 
directional guidance field di to a unit vector in minimum curvature direction in salient regions, and to zero everywhere 
else. Alternatively, a continuously weighted alignment term can be used by setting the local magnitude of di based on a 
curvedness measure on Pi , e.g., as in Kälberer et al. (2007), Ray et al. (2006), Knöppel et al. (2013).

Stretch guidance As proposed in Marcias et al. (2013), one can orient quad mesh elements according to the principal direc-
tions of stretch occurring when deforming P0 to Pi . Here this corresponds to setting di to (|λ0|/|λ1| −1)s0, where |λ0| > |λ1|
are the singular values and s0 is an eigenvector of J0i . Such a choice of directional guidance puts a focus on element shear 
reduction.

Tensor conversion Let d be a tangent vector represented using coordinates in a local 2D tangent coordinate system. Using 
the standard identification of R2 and C, we can write d = reiθ , which is the complex representation of d. The representation 
vector of the 4th-order tensor then simply is d̄ = rei4θ .

6. Mesh generation

Having constructed a metric g (with the case of particular interest here being g = gmax) and a guidance field d = davg, 
both on P = P0, we strive to generate a quad mesh that is as uniform as possible in g (i.e. with unit length edges and 
right face angles, measured in g), while edges tend to align to d. The meshing approaches based on cross field guided 
parametrization (cf. Section 2) are particularly suited for this task. There are two main categories: methods based on global
parametrization (e.g. Bommes et al., 2009; Kälberer et al., 2007) or local parametrization (e.g. Jakob et al., 2015; Ray et al., 
2006). The former approach generates a globally consistent integer grid map that implies a pure quad mesh, but requires 
rather involved measures to achieve robustness (Bommes et al., 2013a; Campen et al., 2015). The latter approach is simpler 
but generates a quad-dominant mesh only—which can be turned into a pure quad mesh by subdivision (introducing an 
additional irregular vertex for each non-quad) (Jakob et al., 2015).

Most of the meshing methods from these two categories were proposed in a formulation that assumes the Euclidean 
metric gEuclid = I . Global parametrization methods can be adapted to a different metric g (in particular our gmax) either 
through ‘metric uniformization by surface deformation’ as proposed by Panozzo et al. (2014), or through the use of g in the 
definition of parallel transport for the cross field generation and in the definition of norms in the parametrization energy.

The local parametrization based approach has the characteristic property of automatically introducing additional extraor-
dinary vertices (besides those already imposed by the guiding cross field) where necessary to keep the mesh elements very 
close to their desired local size and shape. According to our experiments, this is particularly beneficial when the metric 
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Fig. 7. The mesh of Fig. 1 bottom as generated when using Bommes et al. (2013a) instead of Jakob et al. (2015) with our technique. The number of 
non-regular vertices is lower, while quads are shaped worse.

varies significantly across the surface, e.g. due to strong deformations between poses. The global parametrization approach, 
by contrast, leads to a smaller number of extraordinary vertices in such cases, at the cost of higher element distortion 
(cf. Fig. 7). As the optimal trade-off is application dependent, we do not intend to advocate one approach over the other and 
note that either one can be used with our technique. As it more clearly conveys the effects of metric variations, we choose 
to use a local parametrization approach (Jakob et al., 2015) for demonstrations herein. We adapt it to custom metrics as 
detailed in the following.

6.1. Metric-aware local parametrization

Like most related methods, the recent local parametrization approach (Jakob et al., 2015) was described for gEuclid. The 
authors state that it is straightforward to use custom metrics with this technique. While this is indeed true from a high level 
perspective, a number of non-trivial issues and details need to be addressed when taking a closer look on a lower level. We 
describe in the following how this method can be generalized to Riemannian metrics such as our gmax. For brevity, we do 
not repeat the overall algorithm here but refer the reader to the original paper (Jakob et al., 2015).

Symmetry groups The method relies on the sets R and T , which represent the cross field’s rotational symmetry group 
and the integer grid’s translational symmetry group, respectively. Under the Euclidean metric, the elements of R can be 
obtained from one representative element (unit vector) o via R(o, n, k) = rot(n, k π

2 )o, where rot(n, θ) is a rotation matrix 
around axis n by angle θ .

In our case, the four vectors of a metric-dependent cross are supposed to be in π
2 increments with respect to g . This is 

achieved using the definition Rg(o, n, k) = √
g−1rot(n, k π

2 )
√

g o, where 
√

g is computed via singular value decomposition: √
g = U

√
� U T where U�U T = g . Note that if o is a unit vector under g , i.e. oTg o = 1, so are the other resulting elements 

of Rg . Hence Rg properly represents crosses that are orthonormal under g .
Tg in our case is supposed to represent a regular grid under g , i.e. a general oblique lattice in Euclidean space. It is 

simply spanned by the vectors of Rg .

Metric transport In order to compare vectors from different tangent spaces, they must be transported to a common space. 
This is accomplished by a definition of parallel transport. A common choice in the discrete setting is unfolding via the 
rotation matrix R ji = rot(n j × ni, �(n j, ni)), where ni and n j are the normals of two tangent spaces on P . The vector o j
from tangent space j transported to tangent space i then is computed as o ji = R jio j .

In our setting we also need to be able to transport metric tensors. We define g ji (the tensor g j from tangent space 
j transported to tangent space i) as g ji = RT

ij g j Ri j , where Rij = R−1
ji . A simple calculation shows that oT

ji g ji o′
ji = oT

j g j o′
j

holds, i.e. this definition of metric transport is consistent with the above vector transport.
One situation where this metric transport is to be used is in the initial construction of a multiresolution hierarchy of 

P . When two vertices i and j are merged to a vertex v on a coarser level, a metric tensor for this vertex is interpolated; 
the tensors of i and j are transported to v and averaged: gv = 1

2 (giv + g jv ). Further uses of metric transport occur in the 
following.

Period jumps When comparing and averaging crosses in neighboring tangent spaces i and j, the period jump kij needs to 
be determined. For orthogonal crosses this can be done as originally described: kij = argmink �(oi, R(o ji, k)), i.e. by just 
considering one pair of representative vectors. The result is independent of which vector oi is used as representative for the 
cross at i.

With our metric g , the crosses are not orthogonal, as described above. The choice must thus be made differently in order 
to determine the period jump that best aligns the crosses, not just individual representative vectors. This is achieved by:

kij = argmin
k

∑
�(Rgi (oi, l),Rg ji (o ji, l + k)).
0≤l<4
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Fig. 8. Left: visualization of the difference in local shape approximation quality (pointwise input surface to quad mesh distance) when comparing our method 
(metric gmax) and a standard, static method (effectively using metric g0 only). In green regions, the mesh generated by the standard approach is better, in 
red regions, it is worse than our result. On P0 the differences are minor, as expected. On P1, the mesh optimized for P0 using the standard, static approach 
(and then deformed to pose P1) has significantly larger approximation error (red regions, especially on stretched and bent parts, such as knees, shoulders, 
elbows) than the mesh optimized over both poses using our method. Right: the two quad meshes in pose P1; notice that long, stretched quad elements (in 
particular in direction of strong curvature) are avoided by our method, thereby reducing approximation error due to undersampling. It can also be observed 
how additional extraordinary vertices are introduced in order to facilitate the required mesh density transitions.

Fig. 9. Visualization of difference in local shape approximation quality (pointwise input surface to quad mesh distance) between our method, optimizing for 
all poses, and a method optimizing for a static reference pose (P0) only. The corresponding quad meshes are depicted in Fig. 1. Color coding as in Fig. 8, 
i.e. in red regions our method is better.

In this way, the combined alignment of all four vector pairs is measured for each choice of period jump to determine the 
optimal one. By symmetry, the sum can actually be restricted to 0 ≤ j < 2 without changing the result.

Finally, it bears noting that the extrinsic smoothness measures which are demonstrated as being beneficial in Jakob et al.
(2015) are not appropriate for our case of a deformable shape (or a shape in multiple poses): there is no static embedding 
based on which extrinsic measures could be evaluated. We make use of the intrinsic formulation instead, and use our field 
d as directional guiding input to this method. As suggested, one step of midpoint subdivision is performed on the resulting 
quad-dominant mesh in order to yield a quad-only mesh.

7. Results

When performing comparisons of different approaches based on different metrics ga and gb in the following, we rescale 
these metrics with a globally constant factor such that 

∫
P det ga dA = ∫

P det gb dA. This leads to quad meshes of approx-
imately equal complexity (number of elements), allowing for meaningful assessment of the improvements in terms of 
approximation quality.

Key pose sets In Figs. 8 and 9 we compare quad meshes optimized for a static geometry (pose P0 of the input) with quad 
meshes optimized jointly for all given poses (two in Fig. 8, three in Fig. 9) with our method. The S-based metric was 
used in these examples. The local shape approximation quality in terms of pointwise input mesh to quad mesh distance is 
visualized over the surface.



12 J. Zhou et al. / Computer Aided Geometric Design 62 (2018) 3–15
Fig. 10. The shape approximation quality (in terms of Hausdorff distance, left column) and element quality (in terms of quad corner angles, right column) 
of quad meshes during deformation according to given animation sequences (Squat, Crane), some frames of which are depicted below the graphs. We 
compare our method (green) with a standard approach (blue) that optimizes the mesh for frame 0 of the animation. See the text for more details on the 
algorithmic choices.

Animation sequences In Fig. 10 we consider the quality of quad meshes undergoing deformation according to given an-
imation sequences. We compare meshes generated by our proposed method, optimized for the entire input animation 
sequences (using gmax), with quad meshes generated for static pose P0 (as with traditional quad mesh generation methods, 
using g0). We used the S-based metric in this comparison, and made use of orientation fields d computed from the prin-
cipal curvatures as described in Nieser et al. (2012). As can be observed, the Hausdorff distance from the input model to 
the quad mesh is lower when using our method, and the average element shape is better (element corner angles closer to 
90◦). Interestingly, in these examples this even holds for the frame P0; we attribute this to the joint determination of the 
curvature-based orientation constraints over the entire sequence (cf. Section 5) in our method, which provides more stable, 
reliable guidance for the model. Possibly, the typically higher number of extraordinary vertices due to gmax also contributes 
to this effect.

Fig. 11 shows a similar comparison based on animation sequences. However, for this experiment we used our method 
in combination with the orientation guidance based on principal stretch directions proposed by Marcias et al. (2013), as 
detailed in Section 5.1. The further improvement due to the use of our gmax in addition to this animation-aware orientation 
guidance becomes clear in this experiment.

8. Limitations & future work

A high quality solution to the problem of determining suitable guidance fields d is desirable; those discussed in Sec-
tion 5.1 are not always satisfactory. When working with a single static model, manual input (such as stroke guidance Ebke 
et al., 2016) can be reasonable, but for multiple poses and even sequences this is impractical; automatic solutions are 
important in this context.

Finding an exact solution to the tight bounding metric problem (3) would certainly be of value; though we expect the 
practical implications to be minor in the context at hand. On a related note, metrics that consider stretching and squeezing 
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Fig. 11. The shape approximation quality (in terms of Hausdorff distance, left column) and element quality (in terms of quad corner angles, right column) 
of quad meshes during deformation according to given animation sequences (Squat, Crane), some frames of which are depicted. We compare meshes 
optimized for the standard Euclidean metric I of frame 1 (red graph) with meshes optimized for this metric extremally combined over all frames using our 
method (orange graph). It can be observed that in these examples the extremal metric reduces approximation error (left). As expected, the use of the S
(shape-operator) metric in combination with our approach (yellow graph) leads to further error reduction. The element quality (in terms of corner angles) 
is best in the beginning of the sequences with the mesh optimized for frame 1 (red), while later the benefit of the extremal metric (orange) shows. The use 
of S (yellow) naturally leads to less square elements by design; it rather targets low approximation error. Note that the method leading to the red graph is 
conceptually equal to Marcias et al. (2013)—with the exception of the local technique (Jakob et al., 2015) rather than the global technique (Bommes et al., 
2009) being used for mesh generation in the end.

could be of value in certain contexts; averages of gmax and an analogously defined gmin could provide benefits over a 
traditional gavg (1) here.

As discussed in Section 6, the introduction of additional extraordinary vertices is of benefit for individual mesh ele-
ment quality. Depending on the use case it is, however, likewise beneficial if the number of extraordinary vertices is small 
(Bommes et al., 2013b). For use cases that have a strong preference for meshes with a low number of extraordinary ver-
tices, our method in combination with the chosen meshing strategy (Jakob et al., 2015) is likely not a viable choice, and 
so far no alternative automatic quad mesh generation method enables explicit and practical continuous control over the 
trade-off between element quality and extraordinary vertex count. Progress in this direction would thus certainly be of in-
terest. Likewise no fully robust global parametrization based mesh generation technique (that does not introduce additional 
extraordinary vertices) is available, but would be of interest to reliably achieve low numbers of extraordinary vertices even 
with highly variable metrics.

It will be interesting to further explore the use of our method for different models of the same category (as opposed to 
different poses of the same model) to obtain high quality generic quad meshes for shape categories, essentially by a form 
of co-quadrangulation. Depending on the specific scenario, methods for non-rigid shape correspondence finding (van Kaick 
et al., 2011; Kim et al., 2011), including recent machine learning based variants (Boscaini et al., 2016), could play a central 
role in this for determining the diffeomorphisms between models.
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Appendix A. Extremal metric approximation bound

For a given tangent vector v , let i = argmaxN−1
i=0 g0i(v, v). Let

g0i = μaeaeᵀ
a + μbebeᵀ

b , gmax = λadadᵀ
a + λbdbdᵀ

b

be expressions of the metrics in terms of their eigenvalues and eigenvectors. Then

gmax(v, v) = (dᵀ
a v)2λa + (dᵀ

b v)2λb.

Noticing that λa/b = g0i(da/b, da/b) (cf. Equation (4)), we obtain

gmax(v, v) = (dᵀ
a v)2 g0i(da,da) + (dᵀ

b v)2 g0i(db,db)

= (dᵀ
a v)2

(
(eᵀ

a da)
2μa + (eᵀ

b da)
2μb

)
+ (dᵀ

b v)2
(
(eᵀ

a db)
2μa + (eᵀ

b db)
2μb

)

= (eᵀ
a dadᵀ

a v)2μa + (eᵀ
b dadᵀ

a v)2μb + (eᵀ
a dbdᵀ

b v)2μa + (eᵀ
b dbdᵀ

b v)2μb

=
(
(eᵀ

a dadᵀ
a v)2 + (eᵀ

a dbdᵀ
b v)2

)
μa +

(
(eᵀ

b dadᵀ
a v)2 + (eᵀ

b dbdᵀ
b v)2

)
μb.

We compare this to g′
max(v, v) = g0i(v, v) = (eᵀ

a v)2μa + (eᵀ
b v)2μb , by considering the coefficients of μa and μb . In partic-

ular, we show in the following that these are related by
(
(eᵀ

a dadᵀ
a v)2 + (eᵀ

a dbdᵀ
b v)2

)
≥ 1

2
(eᵀ

a v)2

(and analogously for the coefficient of μb). From this it immediately follows that g′
max(v, v)/gmax(v, v) < 2.

Due to orthonormality of da , db (dᵀ
a da = dᵀ

b db = 1 and dᵀ
a db = 0), we have eᵀ

a dadᵀ
a v + eᵀ

a dbdᵀ
b v = eᵀ

a (dadᵀ
a + dbdᵀ

b )v = eᵀ
a v . 

Defining p = eᵀ
a dadᵀ

a v and q = eᵀ
a dbdᵀ

b v , we thus only need to show that p2 + q2 ≥ 1
2 (p + q)2 = 1

2 (p2 + q2) + pq to prove 
the above inequality, or equivalently that p2 + q2 ≥ 2pq. One easily verifies that this holds for any p, q ∈ R.
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