
Computer Aided Geometric Design 62 (2018) 3–15
Contents lists available at ScienceDirect

Computer Aided Geometric Design

www.elsevier.com/locate/cagd

Quadrangulation of non-rigid objects using deformation

metrics

Jiaran Zhou a,c, Marcel Campen b, Denis Zorin c, Changhe Tu a, Claudio T. Silva c

a Shandong University, China
b Osnabrück University, Germany
c New York University, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 22 March 2018

Keywords:
Quad mesh
Mesh generation
Cross field
Surface parametrization
Animation

We present a novel method to generate quad meshes for non-rigid objects. Our method
takes into account the geometry of a collection of key poses in one-to-one correspondence
or even an entire animation sequence. From this input, on a common computational
domain, an extremal metric is computed that captures the local worst case behavior in
terms of distortion as the object undergoes deformation. An anisotropic, non-uniformly
sized quad mesh is then generated based on this metric. This mesh avoids undersampling
when deformed into any of the poses specified in the input and thus reduces artifacts.
Hence, in contrast to previous approaches which target static geometry, our method aims
to optimize the mesh’s adaptation to the shape for every pose expected during animation
or deformation rather than for one specific reference state.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In recent years a variety of versatile methods for the automatic quadrangular remeshing of surfaces has been developed.
These methods typically optimize the properties of the quad mesh, such as element size, anisotropy, orientation, and mesh
connectivity, with respect to the specific given surface geometry. Note that this is appropriate only when dealing with rigid
objects with static geometric properties. At the same time, it is common for quad meshes to be used in animation or
simulation. In this case, while the quad mesh might be well adapted to a particular specific state or pose (based on which
it was generated and optimized), it may be a poor match for other poses or states of deformation (cf. Figs. 1, 8, and 9).

We present a method that aims to produce quadrangulations adequate for every pose during deformation or animation,
rather than optimal for a single pose (cf. Figs. 1 and 2). If known a priori, the deformation can be given as input in form of
a complete surface animation sequence. Otherwise, the expected space of deformation can be outlined by a set of extremal
key poses.

Based on one-to-one correspondences between the key poses or animation frames we analyze the deformation structure
and construct an extremal metric corresponding to the worst-case local metric behavior at every point of the surface.
Furthermore, information about preferable mesh element orientation is determined jointly over the expected deformation.
Together, this allows us to generate an adapted quad mesh with anisotropic element sizing that avoids undersampling
artifacts due to being too coarse in any region for any pose when being deformed.

E-mail address: jiaran .zhou @gmail .com (J. Zhou).
https://doi.org/10.1016/j.cagd.2018.03.003
0167-8396/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cagd.2018.03.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cagd
mailto:jiaran.zhou@gmail.com
https://doi.org/10.1016/j.cagd.2018.03.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cagd.2018.03.003&domain=pdf

4 J. Zhou et al. / Computer Aided Geometric Design 62 (2018) 3–15
Fig. 1. Illustration of our deformation-aware mesh generation method in contrast to a standard, static method (Jakob et al., 2015). Three poses (left) are
taken as input. The standard method optimizes the mesh with respect to the metric of one specific pose, P0; ours uses an extremal metric it computes
over all poses. In the top row, the resulting quad mesh deformed into the poses other than P0 exhibits artifacts, especially in areas of significant stretching
and bending (red). Our quad mesh (bottom row) shows better behavior (despite even having a slightly lower total number of elements) in these poses.
Notice that this comes with an increased number of irregular vertices; these are induced by the stronger local variation in element size and shape due to
deformation-awareness. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 2. The same quad mesh Q in four different poses for which it was jointly optimized using our technique with extremal metric. Notice, for instance,
the higher density of the mesh in the left pose on the knees (because they get bent strongly in poses P1 and P2), under the arm (because it gets stretched
in pose P2), and on the belly (because poses P2 and P3 are more corpulent).

2. Related work

Quad meshing An account of modern quadrangular surface remeshing techniques is given in a recent survey (Bommes et
al., 2013b). Parametrization based techniques have received the most attention in recent years for their flexibility and result
quality (Kälberer et al., 2007; Bommes et al., 2009, 2013a; Pietroni et al., 2011; Liu et al., 2011; Myles and Zorin, 2013;
Panozzo et al., 2014; Ebke et al., 2014; Campen et al., 2015; Campen and Zorin, 2017). These methods all optimize the
mesh properties for one specific surface pose.

J. Zhou et al. / Computer Aided Geometric Design 62 (2018) 3–15 5
A step towards taking surface deformation or animation into account has been made by Marcias et al. (2013): the orien-
tation of mesh elements is chosen based on the principal directions of local surface stretch during deformation. The work
by Meng and He (2016) considers combined feature determination over multiple poses, again to influence mesh element
orientation. Our contribution is orthogonal and complementary to these works: we focus on the determination of appropri-
ate element sizing, anisotropy, and shear; it can be used in conjunction with these techniques that determine orientation, as
well as other, e.g. principal curvature direction based techniques, as detailed in Section 5. Interactive, user-assisted quad-
rangulation techniques (Takayama et al., 2013; Marcias et al., 2015) are another option for mesh generation: the user can
design the mesh taking knowledge about expected deformation behavior into account.

Cross fields A key component of quad remeshing techniques based on parametrization is the computation of 4-symmetric
direction fields. These fields predetermine the parametrization’s singularities and thus the quad mesh’s irregular vertex
structure, and provide directional guidance information for the parametrization’s isolines (which correspond to the quad
mesh’s edges). Key contributions in this context concern the efficient handling of the 4-symmetry (Hertzmann and Zorin,
2000; Palacios and Zhang, 2007; Knöppel et al., 2013), control over the field topology (Li et al., 2006; Ray et al., 2008;
Bommes et al., 2009; Crane et al., 2010), and generalization to non-orthonormal directions (Panozzo et al., 2014; Diamanti
et al., 2014; Jiang et al., 2015). A recent survey (Vaxman et al., 2016) provides a detailed overview of the topic.

Custom metrics In some instances of previous work properties of cross fields or parametrizations are optimized with re-
spect to a metric different from the standard Euclidean metric. For instance, the surface under consideration can be virtually
smoothed in this way, geometrically (Ray et al., 2009) or even topologically (Ebke et al., 2014); the shape operator can be
used as metric tensor to improve approximation properties (Kovacs et al., 2011; Heckbert and Garland, 1999). Also user-
designed metrics can be taken into account, e.g. for the creation of cross or frame fields with spatially varying magnitude
and skewness (Jiang et al., 2015; Pal et al., 2014).

Deformation-aware meshing A number of works have addressed the problem of generating triangle meshes for non-rigid
models. They proceed by decimating an overly dense mesh, taking an animation sequence or individual key poses into
account (Mohr and Gleicher, 2003; DeCoro and Rusinkiewicz, 2005; Landreneau and Schaefer, 2009; Lee et al., 2011).
This is generally accomplished by averaging the employed decimation error functions over the animation frames or
poses. In Section 4.1, we discuss why direct averaging can be inadequate in our context. Several authors proposed tech-
niques to dynamically adjust the mesh connectivity during animation (Kircher and Garland, 2005; Huang et al., 2006;
Payan et al., 2007) for application scenarios where this is appropriate. We focus here on the case of a quad mesh with static
connectivity, because 1) this is more generally applicable in the context of animation and simulation and 2) the set of possi-
ble connectivity changes in quad meshes is less rich compared to the triangle case (Peng et al., 2011; Bommes et al., 2011;
Tarini et al., 2010), even more so if not only proper connectivity but element quality is taken into consideration.

3. Overview

The input to our method is a set of N surfaces Pi , called poses, with pairwise diffeomorphisms hij : Pi → P j mapping
between them. When the poses are obtained through deformation from a reference pose, say P0, such maps are of course
immediately available.

The sequence of poses can be the frames of a complete animation sequence, or a set of key poses which ideally are
extremal, in the sense that other expected deformation states are likely to lie within the convex hull, i.e. could be obtained
by interpolation between some of the key poses. The input order of poses plays no role in our method.

With existing quad meshing algorithms one could generate a quad mesh optimized for an individual pose Pi (based on
its Euclidean metric, or any other shape related metric, cf. Sections 2 and 4). By means of the maps hij , one can deform
this quad mesh into a quad mesh for any other pose P j . However, it may be unfit for those poses, with artifacts due to
undersampling, stretch, or shear, as illustrated in Fig. 1.

In our approach we express the target metrics of the individual poses on one common computational domain and com-
bine them into an extremal metric that expresses what quad mesh element sizing and anisotropy is appropriate for all
poses, avoiding undersampling in all directions, for all poses (Section 4). Intuitively, elements are made smaller in regions
that get stretched in some pose, so they do not become overly large when deformed accordingly. Similarly, information about
preferred element orientation (based on shape-derived properties such as principal curvature directions, or on deformation-
derived properties such as principal stretch directions, Marcias et al., 2013) is combined on the common domain (Section 5).
A quad mesh can then be optimized with respect to this metric and orientation information using (variations of) state-of-
the-art techniques (Section 6). We demonstrate that this strategy yields meshes which behave better when undergoing
deformation (Section 7). Fig. 3 shows a visual overview.

4. Deformation-aware metric

In order to enable control over the sizing and anisotropy of mesh elements one can approach the quad mesh generation
problem as follows: let a standard quad meshing method simply aim for unit square quads, while adjusting the notion of

6 J. Zhou et al. / Computer Aided Geometric Design 62 (2018) 3–15
Fig. 3. Overview of our method: Multiple poses or frames (P0, P1, P2) are taken as input. Metrics gi and orientation fields di are computed per pose. The
metrics are consolidated into an extremal metric gmax on a common domain. Orientation fields are combined through appropriate averaging operations.
Based on this a cross (or frame) field and a field guided parametrization are computed. Finally, a quad mesh is extracted from the parametrization.

Fig. 4. The effect of the metric choice gi = sS T
i Si on an example model.

“unit square” by means of a custom metric on the surface. For a background on the concepts of differential geometry used
in the following, we refer to the introduction by Frankel (2011).

Let gi be a Riemannian metric tensor field on pose Pi . As usual, for a choice of local tangent space bases these quadratic
forms can be represented by matrices, gi(x) ∈ R

2×2, for every point x on Pi .
The following types of metrics are of particular relevance:

• gi = sI uniform, isotropic
• gi = si(x)I non-uniform, isotropic
• gi = Ai(x) non-uniform, anisotropic

Here I ∈R
2×2 is the identity, s ∈R is a global scaling factor, si : Pi → R is a scalar sizing field on Pi , and Ai : Pi →R

2×2

is an arbitrary field of positive definite quadratic forms, i.e. symmetric positive definite matrices, on Pi .
Anisotropically sized elements are particularly of interest to minimize and equalize discretization errors. A choice of

gi = sSi , where Si is the shape operator on Pi (whose eigenvalues and eigenvectors are the principal curvatures κmin and
κmax and their directions dmin and dmax, respectively) is known to optimize the geometric approximation of the surface
(Heckbert and Garland, 1999) by the resulting mesh in the limit of small quads. A choice of gi = sS T

i Si (cf. Fig. 4) is known
to optimize approximation in terms of equalized surface normal error (Kovacs et al., 2011). In practice, to ensure positive
definiteness in regions of vanishing surface curvature, these can be regularized by adding ε I with ε > 0. More generally, for
the approximation of arbitrary functions (surface signals), gi = sHi is L2-optimal (Nadler, 1986), where H is the function’s
Hessian.

J. Zhou et al. / Computer Aided Geometric Design 62 (2018) 3–15 7
Fig. 5. Visualization of metric tensors at random points as ellipses which are unit circles under the respective metric. The metric shown here is based on
the shape operator S . Metric g1 on pose P1 is mapped to pose P0 as g01. Then g00 (=g0) and g01 are combined to gmax on P0 (which in this particular
example is essentially equal to g01).

Fig. 6. The effect of the extremal metric gmax on a simple plane model, bent into different poses. Depending on whether only pose P0 (left), poses P0 and
P1 (middle), or poses P0, P1, and P2 (right) are taken as input, the resulting quad mesh (shown deformed into the different poses below) will have its
element sizing and anisotropy adapted accordingly. A metric based on shape operator S was used here, so element shapes are adapted to curvature: the
most extreme curvature encountered locally in any of the poses determines the local element shape and size.

4.1. Metric consolidation

We can “transfer” the metric g j from P j to Pi as the pullback h∗
i j g j of g j by hij . Let J i j be the Jacobian of hij , then

h∗
i j g j = Jᵀ

i j g j J i j . In this way we can, in particular, obtain the set of N metric tensors g0i := h∗
0i gi on P0 (where g00 := g0),

cf. Fig. 5. Note that computing a quad mesh on P0 based on metric g0i and mapping the result to Pi via h0i would
yield the same result as performing the computation on Pi based on metric gi (in a hypothetical exact setting, i.e. up
to numerical or discretization effects). We are thus now able to perform computations targeted at specific poses Pi on a
common computational domain; w.l.o.g. we choose P0.

Our goal is to compute a quad mesh that is not optimized for a specific pose, but for all poses. We thus create a new
metric on P0 that takes all the metrics g0i into account. A simple choice is the average metric

gavg = 1

N

N−1∑
i=0

g0i (1)

defined on P0. This is akin to the average (or sum) error functions used in pose-aware triangle mesh decimation techniques
(cf. Section 2). The problem with this averaging is that it implicitly weights local deformation states by how common they
are in the pose set. For instance, consider a large set of poses of a character model where each pose is derived from a rest
pose by exercising one joint to one of its extremes. In this case the average metric does hardly differ from the metric of the
rest pose, because every surface region is in its rest state in all but one of the many poses.

8 J. Zhou et al. / Computer Aided Geometric Design 62 (2018) 3–15
Extremal metric We thus propose the use of an extremal metric rather than an average metric. For the above example this
means that the metric locally reflects the surface stretch experienced in the poses that deform a region the most, rather
than the rest pose (cf. Figs. 5 and 6).

One needs to decide whether the metric should be extremal in a maximum or a minimum sense; intuitively, whether it
should be sensitive to the largest stretching or the largest squeezing of the surface. For the purpose of meshing, the former
is relevant, because stretching leads to undersampling, whereas squeezing only leads to unnecessarily fine sampling (which
is only an issue if mesh simplicity is of highest priority). We thus define

g′
max(v, v) = N−1

max
i=0

g0i(v, v) (2)

for any tangent vector v . Notice that g′
max defined in this way is not a quadratic form, i.e. not a Riemannian metric, in

general. We thus consider instead a tight bounding quadratic form gmax defined via

det(gmax)→min s.t. gmax(v, v) ≥ g′
max(v, v) for all v. (3)

4.2. Implementation details

The poses Pi are given as triangle meshes. We compute the necessary metric-related values per triangle or vertex of P0
as follows.

Computing the Jacobians J0i Let each triangle in each of the poses be equipped with a local 2D coordinate system. Let a, b,
c be the coordinates of the three vertices of a triangle in P0. The Jacobian of h0i in this triangle is then computed as

J0i = [
h0i(b) − h0i(a) h0i(c) − h0i(a)

] [
b − a c − a

]−1
.

Depending on the mesh generation technique to be used, a metric defined on a per-triangle or per-vertex basis might
be required. In the per-vertex case, per-vertex Jacobians can be interpolated from those of the incident triangles (after
rotations about the respective axes nt × nv , aligning a triangle tangent plane, with normal nt , to the vertex tangent plane,
with normal nv).

Computing the shape operator S We estimate principal curvatures κmin,i , κmax,i and their directions dmin,i , dmax,i on a pose Pi
(Cazals and Pouget, 2003) (again with respect to local coordinate systems). Then Si = κmin,idmin,id

ᵀ
min,i + κmax,idmax,id

ᵀ
max,i .

Computing the extremal metric gmax While it is long known that the optimization problem (3) has a unique solution
(Behrend, 1938; John, 1948), no simple technique to find it if N > 2 is available. Even if we just require the inequality
to hold for a sample of directions v , non-trivial iterative solution techniques are necessary (Kumar and Yildirim, 2005). As
we need to perform this for every single triangle, we use an approximation instead:

Each metric g0i can be written as g0i = λaidaid
ᵀ
ai +λbidbid

ᵀ
bi , where λai , λbi are the eigenvalues, and dai , dbi the eigenvec-

tors of g0i . We construct gmax = λadadᵀ
a +λbdbdᵀ

b , where the eigenvectors da and db are taken from gavg, and the eigenvalues
λa , λb are computed as:

λa/b = N−1
max
i=0

λai(d
ᵀ
a/bdai)

2 + λbi(d
ᵀ
a/bdbi)

2. (4)

A simple calculation shows that we then have

gmax(da/b,da/b) = g′
max(da/b,da/b) = N−1

max
i=0

g0i(da/b,da/b),

i.e. the approximation is exact in the principal directions da and db . One can furthermore show (cf. Appendix A) that for
other directions v , the approximation error is bounded: g′

max(v, v)/gmax(v, v) < 2, i.e. the underestimation of lengths is
bounded everywhere and in any direction by a factor

√
2. The approximation can thus easily be made conservative by

scaling with a corresponding factor. This global scaling, of course, is without effect if the quadrangulation is performed with
respect to a target mesh complexity rather than a specific target sizing, and might as well be omitted.

5. Element orientation

Often, orienting quad elements such that edges follow principal curvature directions, at least in significantly curved
regions, is of interest (Bommes et al., 2009; Campen et al., 2016). Alternatively, the user may want to specify the orientation
manually, usually in a sparse manner.

We can model such directional guidance objectives in a general way as follows. Let di be a tangent vector field on Pi
whose direction specifies the desired edge orientation (e.g. the minimum principal curvature direction or another direction

J. Zhou et al. / Computer Aided Geometric Design 62 (2018) 3–15 9
set by the user) and whose magnitude specifies the importance (e.g. it may be related to the local anisotropy of the surface,
or be 0 in regions where there is no preference in terms of element orientation).

Let d0i := J i0di be the pullback of di by h0i on P0. Note that these directions can obviously be contradictory: d0i may
differ from d0 j for i �= j. This, for instance, is the case if di and d j are principal curvature directions and the surface is bent
differently in poses Pi and P j . In such cases we strive to align to these directions as well as possible by striking a balance.

To this end, we compute a weighted average of the directions specified by d0i , where the weights are dictated by the
magnitudes ‖d0i‖. Here it is important to note that a cross field as well as a regular quad mesh, away from extraordinary
vertices, has a 4-symmetric structure; whether we enforce element orientation according to a direction d, d⊥ , −d, or −d⊥
is irrelevant. Here d⊥ denotes a π

2 -rotated (in the tangent plane) version of d. This invariance to rotations by multiples of
π
2 must be considered to obtain a proper average. For instance, averaging d and d⊥ should not result in (some multiple of)

d + d⊥ , but in d (or any k π
2 -rotation thereof, k ∈ Z).

To achieve this invariance, we map the vector fields d0i to 4th-order tensor fields (Palacios and Zhang, 2007) which
are inherently invariant to rotations by multiples of π

2 . In form of the so-called representation vector (Palacios and Zhang,
2007), they can be averaged by simple vector addition:

d̄avg := 1

N

N−1∑
i

d̄0i,

where d̄ denotes the 4th-order tensor representation of d . The result is then mapped back to a vector field davg. Note that
this, due to the involvement of the magnitude of d0i , is a weighted average. A very similar π

2 -symmetric averaging operation
is performed in Marcias et al. (2013); some difference lies in that work using as final weight (i.e. magnitude of davg) the
(weighted) average of the magnitudes of the d0i , regardless of how compatible or contradictory the individual directions are.
With the formulation here, the weights (encoded in the magnitude of the d̄0i) are attenuated depending on how strongly
the individual directions differ.

5.1. Implementation details

Curvature guidance Some binary feature filters have been proposed in the past (Bommes et al., 2009; Nieser et al., 2012;
Campen et al., 2016), that can be used to identify salient regions on meshes. We can apply them per pose Pi and set the
directional guidance field di to a unit vector in minimum curvature direction in salient regions, and to zero everywhere
else. Alternatively, a continuously weighted alignment term can be used by setting the local magnitude of di based on a
curvedness measure on Pi , e.g., as in Kälberer et al. (2007), Ray et al. (2006), Knöppel et al. (2013).

Stretch guidance As proposed in Marcias et al. (2013), one can orient quad mesh elements according to the principal direc-
tions of stretch occurring when deforming P0 to Pi . Here this corresponds to setting di to (|λ0|/|λ1| −1)s0, where |λ0| > |λ1|
are the singular values and s0 is an eigenvector of J0i . Such a choice of directional guidance puts a focus on element shear
reduction.

Tensor conversion Let d be a tangent vector represented using coordinates in a local 2D tangent coordinate system. Using
the standard identification of R2 and C, we can write d = reiθ , which is the complex representation of d. The representation
vector of the 4th-order tensor then simply is d̄ = rei4θ .

6. Mesh generation

Having constructed a metric g (with the case of particular interest here being g = gmax) and a guidance field d = davg,
both on P = P0, we strive to generate a quad mesh that is as uniform as possible in g (i.e. with unit length edges and
right face angles, measured in g), while edges tend to align to d. The meshing approaches based on cross field guided
parametrization (cf. Section 2) are particularly suited for this task. There are two main categories: methods based on global
parametrization (e.g. Bommes et al., 2009; Kälberer et al., 2007) or local parametrization (e.g. Jakob et al., 2015; Ray et al.,
2006). The former approach generates a globally consistent integer grid map that implies a pure quad mesh, but requires
rather involved measures to achieve robustness (Bommes et al., 2013a; Campen et al., 2015). The latter approach is simpler
but generates a quad-dominant mesh only—which can be turned into a pure quad mesh by subdivision (introducing an
additional irregular vertex for each non-quad) (Jakob et al., 2015).

Most of the meshing methods from these two categories were proposed in a formulation that assumes the Euclidean
metric gEuclid = I . Global parametrization methods can be adapted to a different metric g (in particular our gmax) either
through ‘metric uniformization by surface deformation’ as proposed by Panozzo et al. (2014), or through the use of g in the
definition of parallel transport for the cross field generation and in the definition of norms in the parametrization energy.

The local parametrization based approach has the characteristic property of automatically introducing additional extraor-
dinary vertices (besides those already imposed by the guiding cross field) where necessary to keep the mesh elements very
close to their desired local size and shape. According to our experiments, this is particularly beneficial when the metric

10 J. Zhou et al. / Computer Aided Geometric Design 62 (2018) 3–15
Fig. 7. The mesh of Fig. 1 bottom as generated when using Bommes et al. (2013a) instead of Jakob et al. (2015) with our technique. The number of
non-regular vertices is lower, while quads are shaped worse.

varies significantly across the surface, e.g. due to strong deformations between poses. The global parametrization approach,
by contrast, leads to a smaller number of extraordinary vertices in such cases, at the cost of higher element distortion
(cf. Fig. 7). As the optimal trade-off is application dependent, we do not intend to advocate one approach over the other and
note that either one can be used with our technique. As it more clearly conveys the effects of metric variations, we choose
to use a local parametrization approach (Jakob et al., 2015) for demonstrations herein. We adapt it to custom metrics as
detailed in the following.

6.1. Metric-aware local parametrization

Like most related methods, the recent local parametrization approach (Jakob et al., 2015) was described for gEuclid. The
authors state that it is straightforward to use custom metrics with this technique. While this is indeed true from a high level
perspective, a number of non-trivial issues and details need to be addressed when taking a closer look on a lower level. We
describe in the following how this method can be generalized to Riemannian metrics such as our gmax. For brevity, we do
not repeat the overall algorithm here but refer the reader to the original paper (Jakob et al., 2015).

Symmetry groups The method relies on the sets R and T , which represent the cross field’s rotational symmetry group
and the integer grid’s translational symmetry group, respectively. Under the Euclidean metric, the elements of R can be
obtained from one representative element (unit vector) o via R(o, n, k) = rot(n, k π

2)o, where rot(n, θ) is a rotation matrix
around axis n by angle θ .

In our case, the four vectors of a metric-dependent cross are supposed to be in π
2 increments with respect to g . This is

achieved using the definition Rg(o, n, k) = √
g−1rot(n, k π

2)
√

g o, where
√

g is computed via singular value decomposition: √
g = U

√
� U T where U�U T = g . Note that if o is a unit vector under g , i.e. oTg o = 1, so are the other resulting elements

of Rg . Hence Rg properly represents crosses that are orthonormal under g .
Tg in our case is supposed to represent a regular grid under g , i.e. a general oblique lattice in Euclidean space. It is

simply spanned by the vectors of Rg .

Metric transport In order to compare vectors from different tangent spaces, they must be transported to a common space.
This is accomplished by a definition of parallel transport. A common choice in the discrete setting is unfolding via the
rotation matrix R ji = rot(n j × ni, �(n j, ni)), where ni and n j are the normals of two tangent spaces on P . The vector o j
from tangent space j transported to tangent space i then is computed as o ji = R jio j .

In our setting we also need to be able to transport metric tensors. We define g ji (the tensor g j from tangent space
j transported to tangent space i) as g ji = RT

ij g j Ri j , where Rij = R−1
ji . A simple calculation shows that oT

ji g ji o′
ji = oT

j g j o′
j

holds, i.e. this definition of metric transport is consistent with the above vector transport.
One situation where this metric transport is to be used is in the initial construction of a multiresolution hierarchy of

P . When two vertices i and j are merged to a vertex v on a coarser level, a metric tensor for this vertex is interpolated;
the tensors of i and j are transported to v and averaged: gv = 1

2 (giv + g jv). Further uses of metric transport occur in the
following.

Period jumps When comparing and averaging crosses in neighboring tangent spaces i and j, the period jump kij needs to
be determined. For orthogonal crosses this can be done as originally described: kij = argmink �(oi, R(o ji, k)), i.e. by just
considering one pair of representative vectors. The result is independent of which vector oi is used as representative for the
cross at i.

With our metric g , the crosses are not orthogonal, as described above. The choice must thus be made differently in order
to determine the period jump that best aligns the crosses, not just individual representative vectors. This is achieved by:

kij = argmin
k

∑
�(Rgi (oi, l),Rg ji (o ji, l + k)).
0≤l<4

J. Zhou et al. / Computer Aided Geometric Design 62 (2018) 3–15 11
Fig. 8. Left: visualization of the difference in local shape approximation quality (pointwise input surface to quad mesh distance) when comparing our method
(metric gmax) and a standard, static method (effectively using metric g0 only). In green regions, the mesh generated by the standard approach is better, in
red regions, it is worse than our result. On P0 the differences are minor, as expected. On P1, the mesh optimized for P0 using the standard, static approach
(and then deformed to pose P1) has significantly larger approximation error (red regions, especially on stretched and bent parts, such as knees, shoulders,
elbows) than the mesh optimized over both poses using our method. Right: the two quad meshes in pose P1; notice that long, stretched quad elements (in
particular in direction of strong curvature) are avoided by our method, thereby reducing approximation error due to undersampling. It can also be observed
how additional extraordinary vertices are introduced in order to facilitate the required mesh density transitions.

Fig. 9. Visualization of difference in local shape approximation quality (pointwise input surface to quad mesh distance) between our method, optimizing for
all poses, and a method optimizing for a static reference pose (P0) only. The corresponding quad meshes are depicted in Fig. 1. Color coding as in Fig. 8,
i.e. in red regions our method is better.

In this way, the combined alignment of all four vector pairs is measured for each choice of period jump to determine the
optimal one. By symmetry, the sum can actually be restricted to 0 ≤ j < 2 without changing the result.

Finally, it bears noting that the extrinsic smoothness measures which are demonstrated as being beneficial in Jakob et al.
(2015) are not appropriate for our case of a deformable shape (or a shape in multiple poses): there is no static embedding
based on which extrinsic measures could be evaluated. We make use of the intrinsic formulation instead, and use our field
d as directional guiding input to this method. As suggested, one step of midpoint subdivision is performed on the resulting
quad-dominant mesh in order to yield a quad-only mesh.

7. Results

When performing comparisons of different approaches based on different metrics ga and gb in the following, we rescale
these metrics with a globally constant factor such that

∫
P det ga dA = ∫

P det gb dA. This leads to quad meshes of approx-
imately equal complexity (number of elements), allowing for meaningful assessment of the improvements in terms of
approximation quality.

Key pose sets In Figs. 8 and 9 we compare quad meshes optimized for a static geometry (pose P0 of the input) with quad
meshes optimized jointly for all given poses (two in Fig. 8, three in Fig. 9) with our method. The S-based metric was
used in these examples. The local shape approximation quality in terms of pointwise input mesh to quad mesh distance is
visualized over the surface.

12 J. Zhou et al. / Computer Aided Geometric Design 62 (2018) 3–15
Fig. 10. The shape approximation quality (in terms of Hausdorff distance, left column) and element quality (in terms of quad corner angles, right column)
of quad meshes during deformation according to given animation sequences (Squat, Crane), some frames of which are depicted below the graphs. We
compare our method (green) with a standard approach (blue) that optimizes the mesh for frame 0 of the animation. See the text for more details on the
algorithmic choices.

Animation sequences In Fig. 10 we consider the quality of quad meshes undergoing deformation according to given an-
imation sequences. We compare meshes generated by our proposed method, optimized for the entire input animation
sequences (using gmax), with quad meshes generated for static pose P0 (as with traditional quad mesh generation methods,
using g0). We used the S-based metric in this comparison, and made use of orientation fields d computed from the prin-
cipal curvatures as described in Nieser et al. (2012). As can be observed, the Hausdorff distance from the input model to
the quad mesh is lower when using our method, and the average element shape is better (element corner angles closer to
90◦). Interestingly, in these examples this even holds for the frame P0; we attribute this to the joint determination of the
curvature-based orientation constraints over the entire sequence (cf. Section 5) in our method, which provides more stable,
reliable guidance for the model. Possibly, the typically higher number of extraordinary vertices due to gmax also contributes
to this effect.

Fig. 11 shows a similar comparison based on animation sequences. However, for this experiment we used our method
in combination with the orientation guidance based on principal stretch directions proposed by Marcias et al. (2013), as
detailed in Section 5.1. The further improvement due to the use of our gmax in addition to this animation-aware orientation
guidance becomes clear in this experiment.

8. Limitations & future work

A high quality solution to the problem of determining suitable guidance fields d is desirable; those discussed in Sec-
tion 5.1 are not always satisfactory. When working with a single static model, manual input (such as stroke guidance Ebke
et al., 2016) can be reasonable, but for multiple poses and even sequences this is impractical; automatic solutions are
important in this context.

Finding an exact solution to the tight bounding metric problem (3) would certainly be of value; though we expect the
practical implications to be minor in the context at hand. On a related note, metrics that consider stretching and squeezing

J. Zhou et al. / Computer Aided Geometric Design 62 (2018) 3–15 13
Fig. 11. The shape approximation quality (in terms of Hausdorff distance, left column) and element quality (in terms of quad corner angles, right column)
of quad meshes during deformation according to given animation sequences (Squat, Crane), some frames of which are depicted. We compare meshes
optimized for the standard Euclidean metric I of frame 1 (red graph) with meshes optimized for this metric extremally combined over all frames using our
method (orange graph). It can be observed that in these examples the extremal metric reduces approximation error (left). As expected, the use of the S
(shape-operator) metric in combination with our approach (yellow graph) leads to further error reduction. The element quality (in terms of corner angles)
is best in the beginning of the sequences with the mesh optimized for frame 1 (red), while later the benefit of the extremal metric (orange) shows. The use
of S (yellow) naturally leads to less square elements by design; it rather targets low approximation error. Note that the method leading to the red graph is
conceptually equal to Marcias et al. (2013)—with the exception of the local technique (Jakob et al., 2015) rather than the global technique (Bommes et al.,
2009) being used for mesh generation in the end.

could be of value in certain contexts; averages of gmax and an analogously defined gmin could provide benefits over a
traditional gavg (1) here.

As discussed in Section 6, the introduction of additional extraordinary vertices is of benefit for individual mesh ele-
ment quality. Depending on the use case it is, however, likewise beneficial if the number of extraordinary vertices is small
(Bommes et al., 2013b). For use cases that have a strong preference for meshes with a low number of extraordinary ver-
tices, our method in combination with the chosen meshing strategy (Jakob et al., 2015) is likely not a viable choice, and
so far no alternative automatic quad mesh generation method enables explicit and practical continuous control over the
trade-off between element quality and extraordinary vertex count. Progress in this direction would thus certainly be of in-
terest. Likewise no fully robust global parametrization based mesh generation technique (that does not introduce additional
extraordinary vertices) is available, but would be of interest to reliably achieve low numbers of extraordinary vertices even
with highly variable metrics.

It will be interesting to further explore the use of our method for different models of the same category (as opposed to
different poses of the same model) to obtain high quality generic quad meshes for shape categories, essentially by a form
of co-quadrangulation. Depending on the specific scenario, methods for non-rigid shape correspondence finding (van Kaick
et al., 2011; Kim et al., 2011), including recent machine learning based variants (Boscaini et al., 2016), could play a central
role in this for determining the diffeomorphisms between models.

14 J. Zhou et al. / Computer Aided Geometric Design 62 (2018) 3–15
Acknowledgements

This work was supported in part by: the Moore-Sloan Data Science Environment at NYU; NASA; DOE; NSF awards
CNS-1229185, CCF-1533564, CNS-1544753, CNS-1730396; NSFC award 61332015. J. Zhou is supported by CSC scholarship
No. 201506220093. C. T. Silva is also partially supported by the DARPA MEMEX and D3M programs. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the
views of DARPA. The authors thank David Bommes for providing data for evaluation purposes.

Appendix A. Extremal metric approximation bound

For a given tangent vector v , let i = argmaxN−1
i=0 g0i(v, v). Let

g0i = μaeaeᵀ
a + μbebeᵀ

b , gmax = λadadᵀ
a + λbdbdᵀ

b

be expressions of the metrics in terms of their eigenvalues and eigenvectors. Then

gmax(v, v) = (dᵀ
a v)2λa + (dᵀ

b v)2λb.

Noticing that λa/b = g0i(da/b, da/b) (cf. Equation (4)), we obtain

gmax(v, v) = (dᵀ
a v)2 g0i(da,da) + (dᵀ

b v)2 g0i(db,db)

= (dᵀ
a v)2

(
(eᵀ

a da)
2μa + (eᵀ

b da)
2μb

)
+ (dᵀ

b v)2
(
(eᵀ

a db)
2μa + (eᵀ

b db)
2μb

)

= (eᵀ
a dadᵀ

a v)2μa + (eᵀ
b dadᵀ

a v)2μb + (eᵀ
a dbdᵀ

b v)2μa + (eᵀ
b dbdᵀ

b v)2μb

=
(
(eᵀ

a dadᵀ
a v)2 + (eᵀ

a dbdᵀ
b v)2

)
μa +

(
(eᵀ

b dadᵀ
a v)2 + (eᵀ

b dbdᵀ
b v)2

)
μb.

We compare this to g′
max(v, v) = g0i(v, v) = (eᵀ

a v)2μa + (eᵀ
b v)2μb , by considering the coefficients of μa and μb . In partic-

ular, we show in the following that these are related by
(
(eᵀ

a dadᵀ
a v)2 + (eᵀ

a dbdᵀ
b v)2

)
≥ 1

2
(eᵀ

a v)2

(and analogously for the coefficient of μb). From this it immediately follows that g′
max(v, v)/gmax(v, v) < 2.

Due to orthonormality of da , db (dᵀ
a da = dᵀ

b db = 1 and dᵀ
a db = 0), we have eᵀ

a dadᵀ
a v + eᵀ

a dbdᵀ
b v = eᵀ

a (dadᵀ
a + dbdᵀ

b)v = eᵀ
a v .

Defining p = eᵀ
a dadᵀ

a v and q = eᵀ
a dbdᵀ

b v , we thus only need to show that p2 + q2 ≥ 1
2 (p + q)2 = 1

2 (p2 + q2) + pq to prove
the above inequality, or equivalently that p2 + q2 ≥ 2pq. One easily verifies that this holds for any p, q ∈ R.

References

Behrend, F., 1938. Über die kleinste umbeschriebene und die größte einbeschriebene Ellipse eines konvexen Bereichs. Math. Ann. 115 (1), 379–411.
Bommes, D., Zimmer, H., Kobbelt, L., 2009. Mixed-integer quadrangulation. ACM Trans. Graph. 28 (3), 77.
Bommes, D., Lempfer, T., Kobbelt, L., 2011. Global structure optimization of quadrilateral meshes. Comput. Graph. Forum 30 (2), 375–384.
Bommes, D., Campen, M., Ebke, H.-C., Alliez, P., Kobbelt, L., 2013a. Integer-grid maps for reliable quad meshing. ACM Trans. Graph. 32 (4), 98.
Bommes, D., Lévy, B., Pietroni, N., Puppo, E., Silva, C., Tarini, M., Zorin, D., 2013b. Quad-mesh generation and processing: a survey. Comput. Graph. Forum 32

(6), 51–76.
Boscaini, D., Masci, J., Rodolà, E., Bronstein, M., 2016. Learning shape correspondence with anisotropic convolutional neural networks. In: Advances in Neural

Information Processing Systems 29, pp. 3189–3197.
Campen, M., Zorin, D., 2017. Similarity maps and field-guided T-splines: a perfect couple. ACM Trans. Graph. 36 (4).
Campen, M., Bommes, D., Kobbelt, L., 2015. Quantized global parametrization. ACM Trans. Graph. 34 (6).
Campen, M., Ibing, M., Ebke, H.-C., Zorin, D., Kobbelt, L., 2016. Scale-invariant directional alignment of surface parametrizations. Comput. Graph. Forum 35

(5).
Cazals, F., Pouget, M., 2003. Estimating differential quantities using polynomial fitting of osculating jets. In: Proc. SGP ’03, pp. 177–187.
Crane, K., Desbrun, M., Schröder, P., 2010. Trivial connections on discrete surfaces. Comput. Graph. Forum 29 (5).
DeCoro, C., Rusinkiewicz, S., 2005. Pose-independent simplification of articulated meshes. In: SI3D. ACM, pp. 17–24.
Diamanti, O., Vaxman, A., Panozzo, D., Sorkine-Hornung, O., 2014. Designing N-PolyVector fields with complex polynomials. Comput. Graph. Forum 33 (5),

1–11.
Ebke, H.-C., Campen, M., Bommes, D., Kobbelt, L., 2014. Level-of-detail quad meshing. ACM Trans. Graph. 33 (6).
Ebke, H.-C., Schmidt, P., Campen, M., Kobbelt, L., 2016. Interactively controlled quad remeshing of high resolution 3d models. ACM Trans. Graph. 35 (6).
Frankel, T., 2011. The Geometry of Physics: An Introduction. Cambridge University Press.
Heckbert, P.S., Garland, M., 1999. Optimal triangulation and quadric-based surface simplification. Comput. Geom. 14 (1–3), 49–65.
Hertzmann, A., Zorin, D., 2000. Illustrating smooth surfaces. In: Proc. SIGGRAPH ’00, pp. 517–526.
Huang, F.-C., Chen, B.-Y., Chuang, Y.-Y., 2006. Progressive deforming meshes based on deformation oriented decimation and dynamic connectivity updating.

In: Proc. SCA ’06, pp. 53–62.
Jakob, W., Tarini, M., Panozzo, D., Sorkine-Hornung, O., 2015. Instant field-aligned meshes. ACM Trans. Graph. 34 (6), 189.
Jiang, T., Fang, X., Huang, J., Bao, H., Tong, Y., Desbrun, M., 2015. Frame field generation through metric customization. ACM Trans. Graph. 34 (4), 40.
John, F., 1948. Extremum problems with inequalities as subsidiary conditions. In: Studies and Essays Presented to R. Courant on His 60th Birthday. Inter-

science Publishers, New York, pp. 187–204.

http://refhub.elsevier.com/S0167-8396(18)30017-7/bib42656872656E643A31393338s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib626F6D6D6573323030396D69786564s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib626F6D6D657332303131676C6F62616Cs1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib426F6D6D65733A32303133s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib514D53746172s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib514D53746172s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib4E495053323031365F36303435s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib4E495053323031365F36303435s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib435A3137s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib43616D70656E3A32303135s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib43616D70656E3A323031363A5363616C65496E76617269616E74s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib43616D70656E3A323031363A5363616C65496E76617269616E74s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib43617A616C733A32303033s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib7265664372616E65s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib4465436F726F3A32303035s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib436F6D706C6578526F6F74733A4469616D616E74693A32303134s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib436F6D706C6578526F6F74733A4469616D616E74693A32303134s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib45626B653A32303134s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib6573636B32303136s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib6672616E6B656C3230313167656F6D65747279s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib4865636B62657274473939s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib486572747A6D616E6E3A496C6C757374726174696E67s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib4875616E673A32303036s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib4875616E673A32303036s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib4A616B6F623A496E7374616E74s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib4A69616E673A4D6574726963437573746F6D697A6174696F6Es1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib4A6F686E3A31393438s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib4A6F686E3A31393438s1

J. Zhou et al. / Computer Aided Geometric Design 62 (2018) 3–15 15
Kälberer, F., Nieser, M., Polthier, K., 2007. Quadcover—surface parameterization using branched coverings. Comput. Graph. Forum 26 (3), 375–384.
Kim, V.G., Lipman, Y., Funkhouser, T., 2011. Blended intrinsic maps. ACM Trans. Graph. 30 (4).
Kircher, S., Garland, M., 2005. Progressive multiresolution meshes for deforming surfaces. In: Proc. SCA ’05, pp. 191–200.
Knöppel, F., Crane, K., Pinkall, U., Schröder, P., 2013. Globally optimal direction fields. ACM Trans. Graph. 32 (4).
Kovacs, D., Myles, A., Zorin, D., 2011. Anisotropic quadrangulation. Comput. Aided Geom. Des. 28 (8).
Kumar, P., Yildirim, E.A., 2005. Minimum-volume enclosing ellipsoids and core sets. J. Optim. Theory Appl. 126 (1), 1–21.
Landreneau, E., Schaefer, S., 2009. Simplification of articulated meshes. Comput. Graph. Forum 28 (2), 347–353.
Lee, H., Ahn, M., Lee, S., 2011. Displaced subdivision surfaces of animated meshes. Computers & Graphics 35 (3), 532–541.
Li, W.-C., Vallet, B., Ray, N., Lévy, B., 2006. Representing higher-order singularities in vector fields on piecewise linear surfaces. IEEE Trans. Vis. Comput.

Graph. 12 (5), 1315–1322.
Liu, Y., Xu, W., Wang, J., Zhu, L., Guo, B., Chen, F., Wang, G., 2011. General planar quadrilateral mesh design using conjugate direction field. ACM Trans.

Graph. 30 (6).
Marcias, G., Pietroni, N., Panozzo, D., Puppo, E., Sorkine-Hornung, O., 2013. Animation-aware quadrangulation. Comput. Graph. Forum 32 (5), 167–175.
Marcias, G., Takayama, K., Pietroni, N., Panozzo, D., Sorkine-Hornung, O., Puppo, E., Cignoni, P., 2015. Data-driven interactive quadrangulation. ACM Trans.

Graph. 34 (4), 65.
Meng, M., He, Y., 2016. Consistent quadrangulation for shape collections via feature line co-extraction. Comput. Aided Des. 70, 78–88.
Mohr, A., Gleicher, M., 2003. Deformation Sensitive Decimation. Technical report. University of Wisconsin.
Myles, A., Zorin, D., 2013. Controlled-distortion constrained global parametrization. ACM Trans. Graph. 32 (4).
Nadler, E., 1986. Piecewise linear best L2 approximation on triangulations. Approx. Theory 499–502.
Nieser, M., Palacios, J., Polthier, K., Zhang, E., 2012. Hexagonal global parameterization of arbitrary surfaces. IEEE Trans. Vis. Comput. Graph. 18 (6).
Pal, K., Schüller, C., Panozzo, D., Sorkine-Hornung, O., Weyrich, T., 2014. Content-aware surface parameterization for interactive restoration of historical

documents. Comput. Graph. Forum 33 (2), 401–409.
Palacios, J., Zhang, E., 2007. Rotational symmetry field design on surfaces. ACM Trans. Graph. 26 (3).
Panozzo, D., Puppo, E., Tarini, M., Sorkine-Hornung, O., 2014. Frame fields: anisotropic and non-orthogonal cross fields. ACM Trans. Graph. 33 (4), 134.
Payan, F., Hahmann, S., Bonneau, G.P., 2007. Deforming surface simplification based on dynamic geometry sampling. In: Proc. Shape Modeling and Applica-

tions. SMI ’07, pp. 71–80.
Peng, C.-H., Zhang, E., Kobayashi, Y., Wonka, P., 2011. Connectivity editing for quadrilateral meshes. ACM Trans. Graph. 30 (6).
Pietroni, N., Tarini, M., Sorkine, O., Zorin, D., 2011. Global parametrization of range image sets. ACM Trans. Graph. 30 (6).
Ray, N., Li, W.C., Lévy, B., Sheffer, A., Alliez, P., 2006. Periodic global parameterization. ACM Trans. Graph. 25 (4), 1460–1485.
Ray, N., Vallet, B., Li, W.C., Lévy, B., 2008. N-symmetry direction field design. ACM Trans. Graph. 27 (2), 10.
Ray, N., Vallet, B., Alonso, L., Levy, B., 2009. Geometry-aware direction field processing. ACM Trans. Graph. 29 (1).
Takayama, K., Panozzo, D., Sorkine-Hornung, A., Sorkine-Hornung, O., 2013. Sketch-based generation and editing of quad meshes. ACM Trans. Graph. 32 (4),

97.
Tarini, M., Pietroni, N., Cignoni, P., Panozzo, D., Puppo, E., 2010. Practical quad mesh simplification. Comput. Graph. Forum 29 (2), 407–418.
van Kaick, O., Zhang, H., Hamarneh, G., Cohen-Or, D., 2011. A survey on shape correspondence. Comput. Graph. Forum 30 (6), 1681–1707.
Vaxman, A., Campen, M., Diamanti, O., Panozzo, D., Bommes, D., Hildebrandt, K., Ben-Chen, M., 2016. Directional field synthesis, design, and processing.

Comput. Graph. Forum 35 (2).

http://refhub.elsevier.com/S0167-8396(18)30017-7/bib4B616C62657265723A32303037s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib4B696D3A32303131s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib4B6972636865723A32303035s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib4B6E6F7070656C3A476C6F62616C6C4F7074696D616Cs1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib4B6F766163733131s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib4B756D61723A32303035s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib4C616E6472656E6561753A32303039s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib4C65653A32303131s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib4C693A526570726573656E74696E674869676865724F72646572s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib4C693A526570726573656E74696E674869676865724F72646572s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib4C69753A32303131s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib4C69753A32303131s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib6D61726369617332303133616E696D6174696F6Es1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib4D6172636961733A32303135s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib4D6172636961733A32303135s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib6D656E6732303136636F6E73697374656E74s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib4D6F68723A32303033s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib4D5A3A436F6E74726F6C6C6564446973746F7274696F6Es1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib4E613836s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib4E69657365723A32303132s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib50616C3A32303134s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib50616C3A32303134s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib726566526F7453796D4669656C64446573s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib70616E6F7A7A6F323031346672616D65s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib506179616E3A32303037s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib506179616E3A32303037s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib70656E6732303131636F6E6E6563746976697479s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib50696574726F6E693A32303131s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib5261793A504750s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib5261793A4E53796D6D65747279s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib5261793A47656F6D657472794177617265s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib54616B6179616D613A32303133s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib54616B6179616D613A32303133s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib546172696E693A32303130s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib4B6169636B537572766579s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib5661786D616E3A4669656C647353544152s1
http://refhub.elsevier.com/S0167-8396(18)30017-7/bib5661786D616E3A4669656C647353544152s1

	Quadrangulation of non-rigid objects using deformation metrics
	1 Introduction
	2 Related work
	3 Overview
	4 Deformation-aware metric
	4.1 Metric consolidation
	4.2 Implementation details

	5 Element orientation
	5.1 Implementation details

	6 Mesh generation
	6.1 Metric-aware local parametrization

	7 Results
	8 Limitations & future work
	Acknowledgements
	Appendix A Extremal metric approximation bound
	References

